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The Franck-Hertz Experiment:  A Field-Trip through Quantization
Abstract:

The phenomenon investigated in this experiment was whether or not it was possible to excite atoms by low-energy bombardment, and to determine if the energy transferred from the low-energy electrons to the atoms was always in discrete amounts.  This was investigated using thermionically emitted electrons that were subsequently accelerated by a variable potential through a monatomic vapor.  The electrons that transferred their energy in inelastic collisions could not overcome a retarding potential applied at the collector electrode, and therefore drastic decreases in the current were observed.  These decreases in current always occurred with the same spacing, which can be interpreted as the electrons transferring only discrete amounts of energy to the atoms, and this energy corresponds to the allowed energy levels within the atoms.  The results were very precise, however they were not always accurate.  The excitation energies were determined to be:
Hg-150(:  Peaks   5.7984 eV (within 18.577 %)  Valleys  5.1327 eV (within 4.963 %);

Hg-180(:  Peaks   4.9042 eV (within   0.290 %)  Valleys  4.5651 eV (within 6.644 %);

Neon:       Peaks 17.3120 eV (within 5.399 %).

An explanation for the third valley observed on the neon graph is also included at the end of the error analysis section.  The contact potentials were determined to be:

Hg:    2.763 ( 0.872 electron-volts

Ne:  ~2.500               electron-volts 

Introduction:

It was the purpose of this experiment to determine if the transfer of energy from free material particles to bound electrons in atoms is quantized.  Previous experimental evidence has shown that energy transmission from free electrons to enslaved atomic electrons only occurs in discrete amounts.  This experiment is of enormous historical importance because it provided experimental data that confirmed Bohr’s model of the atom, and the data was also in agreement with spectroscopic results.  

Theory:

In order to understand the processes involved in this experiment, some knowledge of the structure of atoms is needed.  The planetary model of the atom is the classical picture in which the electrons are assumed to orbit the nucleus under the influence of the attractive Coulomb force.  Under this assumption, the electrons are constantly accelerating and therefore, constantly emitting radiation.  As the electron radiates, it loses energy.  This loss of energy would send the electron hurdling into the nucleus, while all the while it would be emitting radiation with a continuously increasing frequency.  


Obviously there is something wrong with this picture because that is not what happens.  Something needed to be done, and it was done by Niels Bohr.  He began to try to incorporate quantum ideas into the model of the atom.  He speculated that motion of electrons in the atom should have quantized properties, in which only certain orbits were allowed.  The Bohr theory of the atom is based on the following two postulates.  First, the electrons in the atom may exist in a discrete set of stationary states of definite energy, defined so that radiation is not emitted continuously.  Second, the atom may undergo a non-classical transition from one of these allowed states to another and thereby emit or absorb a single quantum of electromagnetic radiation. The concept of quantization of energy in matter originates in these two propositions, and is realized in the following derivation.

Circular motion can be described as:
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Where F is the centripetal force acting on the object that is rotating, m is the mass of the object, v is the tangential component of the velocity of the object, and r is the radius of the object’s orbit.  
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The Coulomb force that acts between two charges is:

Where F is the Coulomb force, q1 and q2 represent the charge on each of the charged bodies, (0 is the permativity of the medium, and r is the distance between the two charged bodies.  
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The velocity for a charged particle in motion can then be solved for:

[image: image4.wmf])

1

(

2

r

mv

F

=

And so the kinetic energy of this particle would be:

Bohr assumed the electrons moved in a circular orbit under the Coulomb potential:
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So the total energy of this electron would be the addition of (4) & (5):

Up until now, this entire derivation has been classical.  This is where the argument takes a drastic turn.
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Bohr made an extremely bold postulate that angular momentum was quantized.  This meant that angular momentum could take on only certain discrete values.  The quantization condition that Bohr placed on angular momentum was:
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This expression was somewhat of a guess that Bohr arrived at in light of the latest observations, namely that Planck had discovered energy quantization, and Einstein had found that Planck’s constant came up in the explanation of the photoelectric effect.  The other motivation for this conjecture was that atoms seemed to absorb energy only in discrete amounts, and the emission spectra of atoms was a series of well defined, discrete lines.  Moving on with the derivation, the quantum condition on angular momentum meant that the velocity of electrons in orbit would be given by:
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And so the electron’s kinetic energy is:
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This expression (9) can be equated with (4) to obtain the radius of the quantized orbit:

And finally, the energy of an electron in an atom can be found by using the allowed orbital radii (10) along with the expression (4) which gives the energy of an electron:
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Equation (11) gives the allowed energies for electrons bound to an atom.  This is an extremely important result, because it described exactly the atomic spectra of hydrogen.  This equation is one of the motivators for the Franck-Hertz experiment.
There is some necessity for alarm in this brief derivation.  This expression is the one obtained for hydrogen.  It correctly predicts the hydrogen spectrum, but only lends itself qualitatively to atoms with more than one electron.  This formula is not exactly correct, but its historic significance is great in that it laid a large portion of groundwork for the new quantum theory.  This is, in that regard, labeled the old quantum theory.  The reason for the incorrectness of this ‘old theory’, is that in quantum mechanics, orbits are not well defined due to the uncertainty principle.  Also, this equation has limitations in that it only works for atoms with one electron, or effectively one electron (i.e. once-ionized helium, or other variations on that theme), and it also can not predict the relative intensities of the photon radiation from atoms.  Nevertheless, the theoretical basis of the Franck-Hertz experiment is motivated by Bohr’s equation for the discreteness of energy levels in atoms.  The schematic for the Franck-Hertz is similar.  A beam of electrons is fired through a monatomic gas, and a current is measured.   The electron beam is obtained by indirectly heating an oxide-coated cathode, and letting thermionic emission run its course.  The electrons are ejected with little or no kinetic energy, and are subsequently accelerated from rest by a variable potential.  This potential is applied between the cathode and a grid-form anode.

 There exists, before the electron collector plate, a retarding potential that serves to reject all electrons which do not have some minimum energy to overcome the potential hill. The electrons gain energy as the variable potential is increased.  At some critical energy level, corresponding to an allowed energy level in the atom, the bombarding electrons begin to collide inelastically with the atoms in the vapor, and the colliding electrons lose, and subsequently transfer all of their energy to the atomically bound electrons.  This collision starts out directly in front of the collector electrode.  The electrons thereby lose all of their kinetic energy, and cannot reach the collector electrode due to the retarding potential.  Thus the current drops substantially because these electrons are not registered on the collector.  As the accelerating potential is increased further however, the collision zone gradually moves away from the collector plate.  This is because the electrons reach the critical energy more rapidly, so the collision zone is located at a shorter distance from the point of electron emission.  The electrons eventually have enough energy, as supplied by the accelerating potential, to reach the critical energy a second time.  This corresponds to the second drop in the observed current.  This drop comes occurs at twice the accelerating potential of the first current decrease.  This process occurs again and again.  This explanation describes what occurs in the Franck-Hertz experiment, and confirms demonstrates that energy transfer is quantized.  

A cautionary statement is in order.  ‘Recent studies using spin-polarized electrons have revealed the role that various interactions play in inelastic collisions of slow electrons with complex atoms.’
  The article that this excerpt came from goes on to say how the observed peak separation depends on the geometry of the tube and the vapor pressure.  This is a particularly important realization, because the excitation level observed for mercury is not the first excitation level that is allowed.  The explanation given by the author is very complex, however a key point to note is that the lowest level is not excited due to that level’s small excitation cross section.  Excitation cross section is basically a measure of how large the atom appears to the bombarding electrons, and it depends on the mean free path.  The other explanation given talks in detail about the formation of temporarily negative ion states, however this is far beyond the scope of this paper.  
Apparatus:

Mercury:


The apparatus consists of a Franck-Hertz-Tube No. 6751 on a Front Panel No. 6753, in an oven No. 6752. The Franck-Hertz-Tube is a three-electrode tube with indirectly heated oxide-coated cathode, grid-form anode and collector electrode.  The electrodes are arranged in plane-parallel manner.  The distance between the cathode and the anode (8mm) is large compared with the mean free path length in the mercury vapor in order to ensure a high collision probability.  On the other hand, the separation between the anode and the collector electrode is small.  The tube is provided with a highly activated contact getter and is exhausted to a high vacuum.   The envelope wall between the anode and the collector electrode carries a vacuum-proof sealed-in protective ring made of sintered carborundum, to prevent leakage currents via the ionically conducting hot glass wall.  The tube contains a drop of highly purified mercury. The heating oven consists of a steelplate cabinet.  The oven is heated with a tubular radiator mounted on the floor of the oven.  The power consumption is 400 Watts.  A bimetal switch which can be adjusted with a control knob from the exterior serves for setting and stabilizing the oven temperature.  The apparatus is linked to a computer via a universal interface card.  This allows for two outputs to be read simultaneously and displayed on a screen.  Data logger, a computer program, was in control of collecting the data and displaying the current versus the accelerating potential.

Neon:


The apparatus consists of a neon-filled Franck-Hertz tube in a housing;  a control unit with power supplies, reverse voltage source and DC preamplifier;  and a shielded cable with BNC connector.  The neon-filled tube is a tetrode with an indirectly heated barium oxide cathode, a grid-type control electrode, an anode grid, and a collector electrode.  The electrodes are placed in parallel planes.  The distance between the control grid and the anode grid is about 5mm, and the cathode-control grid and anode-collector spacings are each approximately 2mm.  The control unit provides all voltages required for carrying out this experiment and also contains a sensitive DC amplifier for measuring the collector current.  This control unit is used for both mercury and neon, and has dials that allow for the variation of the heater potential, the retarding potential, the acceleration potential, and the gain (amplification) of the current. 

Procedure:


The procedure was very straightforward, and was relatively simple due to the computer interface.  The values for a retarding potential, heater voltage, and gain were set (as well as temperature of the tube in the case of mercury) to maximize the computer readings.  The data logger was engaged prior to each data run, and then the acceleration potential was increased.  As the accelerating potential was increased, the current would also increase.  At a critical value of accelerating potential (~ 7eV for mercury, and ~ 20 eV for neon) the current would drop sharply.  This was due to the electrons colliding inelastically with the atoms in the tube.  (Note: the reason for the ~ 7eV and  ~ 20eV instead of the ~ 5eV and ~ 18eV is due to the contact potential that exists between the cathode and the vapor atmosphere;  more will be said about this later).  Approximately 10 runs were carried out for each of the temperatures of mercury (180( Celsius and 150(Celsius), and 11 runs for neon.  

Data Analysis:

The energy required for excitation in Neon of the 2p5 3s1 P1 level was experimentally determined to be 17.312 ((0.55957) electron-volts.  The accepted value for the excitation energy at this level is 16.79 electron-volts.  The percent difference between accepted and experimental values is 3.108 %.  The accepted value does however fall within the range of the measured value when uncertainty is taken into account.  The conventionally accepted excitation energy in neon for this experiment is 18.3 electron-volts  (This corresponds to the 2p53p3 S1 transition).  The percent difference between measured and conventionally accepted values is 5.399 %.  At best within allowable uncertainties, the value differs by 2.34 %.

There exists a contradiction between our measurements that must be explained if we are to assume the data we took was good.  The data agrees more closely with the 2p53s1 P1 (16.79 eV) transition, however in the lab, I observed photon emission from the neon tube.  This emission implies that there was a transition from ~18.3 eV to the ~16.7 eV, because the transmission from ~16.7 to the ground state radiates electromagnetic waves with 73.6 nanometer wavelengths which is not visibly observable.  This photon emission occurred whenever the bombarding electrons began to transfer their energy to the atomic electrons.  The color of the light emitted was an orangish-red.  This leads me to believe that one of the ten energy levels that exist in the range of 18.9 eV to 18.3 eV was excited.  All of these energy levels decay to one of the four energy levels that exist between 16.79 eV and 16.57 eV, before decaying to the ground state.  In the transition from the ~18 eV level to the ~16 eV level, an electromagnetic wave is emitted with a wavelength in the orange to red  region of the visible spectrum (i.e. 650 nm to 700 nm).  This forces me to conclude that there was some systematic error at work which consistently supplied us with a lower value of the energy spacing between successive peaks. This will be mentioned in more detail in the error section, however this discussion was included in the data section so as not to lose continuity within the paper.  


The next four paragraphs state the results for the four different cases to be examined in the data taken from mercury.

The average energy difference between the peaks for mercury at 150( Celsius was found to be 5.7984 ((0.213757) electron-volts.  The 6s6p3 P1 (4.89 eV) energy transition is the accepted transition observed in this experiment.  The percent difference between our data and the accepted is 18.577 %.  This value seems to be very far off, and even with the best of luck (allowed by the uncertainty of the measurement) the percent difference is still 14.205 %.  


The value of the excitation energy, obtained from the weighted averages between successive peaks, for mercury at 180( Celsius, was found to be 4.9042 ((0.072473) electron-volts.  This seems to agree within 0.29 % of the accepted value, and overlaps the accepted value when the uncertainty is considered.  


At 150( Celsius, the spacing between successive valleys gives the excitation energy to be 5.1327 ((0.137063) electron-volts.  This corresponds to a 4.963 % difference from the accepted value on average, and a 2.160 % difference if the lowest value is used (within value of uncertainty).  


The excitation energy at 180( Celsius, as obtained from the spacing between valleys, was 4.5651 ((0.070448) electron-volts.  This gives a difference of 6.644 % on average, and 5.204 % at best.


The results stated above are here in tabular form, and a discussion about the deviations from the accepted value can be found in the error analysis section.  

Data Conditions
Average Percent Difference
Percent Difference at Best



Neon (closest corresponding transition)        2p53s1 P1 (16.79 eV)
3.108 %
0.000 %

Neon (conventional)        2p53p3 S1 (18.3 eV)
5.399 %
2.340 %

Mercury (150(C) peaks
                            18.577 %
14.205 %

Mercury (180(C) peaks
                        0.290 %
0.000 %

Mercury (150(C) valleys
4.963 %
2.160 %

Mercury (180(C) valleys
6.644 %
5.204 %


The data was obtained from the data logger in a very accurate way.  Rather than using the ‘analyze graph’ option in data-logger, the data was transferred to text format.  The reason for using this method is that I found it difficult to estimate the error associated with each point from purely graphical techniques.  This method allowed me to see every single data point taken by data logger.


The data was extracted in the following way:

1) The peak (or valley) current was located

2) All voltages that corresponded to the peak current were averaged (and this was the value of the voltage that was recorded for that particular current peak (or valley)

3) The values of the current both directly before and after the peak current were used to gauge the uncertainty.  The difference of those values, divided by two, was the value I used for uncertainty.

Here is an example of the method used.

Sample:

Data #
Current
Accelerating Voltage

1
.12
4.64

2
.12
4.67

3
.13
4.72

4
.15
4.87

5         (Peak)
.16
4.90

6         (Peak)
.16
4.94

7
.15
4.95

8
.11
4.99

The average value for the peak voltage would be given by adding rows 5 and 6 together, and dividing by two, giving Vpeak = 4.92 eV.  The uncertainty is giving by the difference between the voltage in rows 7 and 4, divided by two.  Uncertainty = 0.06 eV.  In utilizing this method, I can say for certain that the peak voltage lies between 4.86 and 4.98 eV.  This method is very conservative.  I could probably be a little more bold in my assertions, but the data I obtained is very good, and assumes nothing.    

The data displayed below was obtained in the following way:

1) The average peak (or valley) voltage and uncertainty was obtained in the aforementioned way as stated directly above.

2) Approximately 3-5 peaks (or valleys) were obtained from each graph (Peak Energy v.s. Peak Number, see Appendix for graphs)

3) The graphs were made using a least-squares weighting method.  This method takes into account the uncertainty in each point, and places less emphasis on those points which have a higher uncertainty.

4) The slopes of the graphs corresponded to the energy necessary to excite the electrons in the atoms of mercury or neon.

5) The array of slopes were then averaged (for each of the conditions, i.e. Hg at 150(C), and this average was compared to the accepted value.

6) The uncertainty associated with the total average was calculated as the standard deviation.  This was done by summing up the squares of the uncertainty for each value, and then taking the square root of that value.  This uncertainty was used in the comparison between measured and accepted values of the excitation energy

Neon

Data Run #
Excitation Energy

(eV)
Uncertainty

1
17.18
.11693

2
17.544
.19458

3
17.605
.15049

4
17.39
.18232

5
17.641
.17672

6
17.301
.14369

7
17.088
.18154

8
17.186
.13626

9
17.087
.15064

10
17.016
.22433

11
17.438
.11844

12
17.266
.12351

Average
17.312
.55957

Mercury Peaks at 150( C:

Data Run #
Excitation Energy

(eV)
Uncertainty

1
5.668
.090271

2
4.9275
.053033

3
5.7901
.12316

4
6.1606
.10422

5
6.4457
.093277

Average
5.7984
.213757

Mercury Peaks at 180( C

Data Run #
Excitation Energy

(ev)
Uncertainty

1
4.9876
.03404

2
4.984
.025934

3
4.747
.051682

4
4.6961
.034079

5
5.1063
.027386





Average
4.9042
.072473

Mercury Valleys at 150( C

Data Run #
Excitation Energy

(eV)
Uncertainty

1
5.1323
.045892

2
4.702
.07834

3
5.2624
.044725

4
5.2519
.030298

5
5.3149
.08732





Average
5.1327
.137063

Mercury Valleys at 180( C

Data Run #
Excitation Energy

(eV)
Uncertainty

1
4.5808
.02597

2
4.6978
.035451

3
4.5562
.040919

4
4.4667
.028884

5
4.5239
.022871

Average
4.5651
.070448

A second method for determining a weighted average for the value of the excitation energy was implemented.  This method is particularly useful when multiple readings, each with a different uncertainty, are taken.  The method involves finding a weighted average:
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This technique is derived from the principle of maximal likelihood.  In this method, the probability of getting each reading is determined.  The probability of getting all of the readings is then obtained by multiplying all of the individual probabilities together.  The principle of maximum likelihood states that one should choose the value of the mean that maximizes this probability, or that which has the maximum likelihood of generating our measurements.

The values obtained by this method are:

Data Conditions


Excitation Energy

(Electron-Volts)
Uncertainty

Mercury (150(C) peak
  5.195466
0.515465

Mercury (180(C) peak
  4.864026
0.718293

Mercury (150(C) valley
  5.159764
0.747322

Mercury (180(C) valley
  4.479096
0.205926

Neon (room temp.)
17.632120
0.205926

The percent differences for this method seem to vary, and there is no general trend as to which method is better for this.  However the values for the excitation energy seem to agree almost entirely when the uncertainty of each value is incorporated.  Thus it seems, in that regard, that the method of maximum likelihood yields results that agree more with the accepted value.  This is achieved I believe, for the most part, because this method incorporates a larger uncertainty into each value.

Data Conditions


Average Percent Difference
Best Percent Difference

Mercury (150(C) peak
6.247 %
0.000 %

Mercury (180(C) peak
0.531 %
0.000 %

Mercury (150(C) valley
5.517 %
0.000 %

Mercury (180(C) valley
8.403 %
4.192 %

Neon (room temp.)
5.016 %
3.789 %

The contact potential, as obtained experimentally, is:


Mercury:

(7.847 ( .135) - [(13.216 ( .245) – (7.847 ( .135)] = 2.478 ( 0.311 eV

(7.783 ( .260) - [(12.505 ( .215) – (7.783 ( .260)] = 3.061 ( 0.426 eV

(7.601 ( .260) - [(12.530 ( .070) – (7.601 ( .260)] = 2.672 ( 0.374 eV

(7.808 ( .350) - [(12.918 ( .150) – (7.808 ( .350)] = 2.698 ( 0.517 eV

(7.743 ( .175) - [(12.580 ( .115) – (7.743 ( .175)] = 2.906 ( 0.273 eV

Average: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.763 ( 0.872 eV


There was not enough information provided by the neon to determine a contact potential, but the value given by the manual was 2.5 eV.

I feel that a qualitative review of the data analysis section is in order because of its lengthiness.  There were two results obtained for mercury.  The results for the lower temperature measurements implied that a higher energy transition was occurring than is normally seen in the Franck-Hertz experiment.  The higher temperature measurements implied that either the expected energy transition was occurring, or that the lowest allowable energy transition was occurring.  The data however is somewhat misleading in the sense that the peaks of the mercury graph at 150( Celsius were very chaotic (see graph on next page).

The results for the neon implied that a lower energy transition was occurring within the neon atoms than is usually observed in the Franck-Hertz.  This data was not consistent with the observed photon emission in the laboratory.  This leads me to the conclusion that there was a systematic error involved in the gathering of data associated with neon that consistently gave results that were lower than they should have been.

Error Analysis:


The results of this experiment were not fully conclusive.  There was obviously some error associated with the observed results, and it is here where I shall attempt to exploit that.  One topic I would like to start with is the apparent excitation of the 6s6p3 P2 (5.46 eV) level in mercury.  This is not altogether unfeasible, but I will show that it is unlikely.  The reason it is not possible comes from an argument by Hanne
.  This paper asserts that the observed peak depends on the geometry of the tube, and the mercury vapor pressure.  It says that as the vapor pressure decreases, the fraction of electrons with a kinetic energy large enough to excite the 6s6p3 P1 and 6s6p3 P2 (4.89 eV and 5.46 eV, respectively) increases.  Thus, it should be noted that the energy spacing between peaks at the 150( Celsius temperature (which has a lower vapor pressure than the 180( Celsius data) which corresponded to a 5.46 eV energy transition is at least qualitatively possible.  This is however not the case.  The reason for the large deviation of the peak spacing from the accepted value (of 4.89 eV) was due to the fact that the peaks were not good measures of the energy spacing.  This is because of the manner in which the density of mercury vapor affects the results.  When the density is high, one observes a low current with very large dips.  When the density is low however, one observes very large currents and small dips.  At 150( Celsius the density of mercury is relatively low, and so the current is very large.  The problem this presents is that as the variable acceleration potential is increased, the current increases very rapidly.  The peak is less defined because of weird effects associated with the amplifier circuit.  I do not know exactly what causes these effects, however some qualitative knowledge of these effects was obtained in the lab, and are stated here.  If the acceleration potential was increased extremely rapidly, the current would increase, and then at some critical point would overload and drop back to zero.  It was noted also that the position, width, and shape of the peak changed tremendously depending on the rate at which the variable potential was changed.  The position of the valley was however, much more invariant under the rate of change of the acceleration potential.  Keep in mind that this effect was only very pronounced for the 150( Celsius measurements.  This is the reason why I believe that the peak measurements for mercury do not characterize the actual physical system under study.  Another reason I believe that the data is bad is because of the second method I used to evaluate the data.  This incorporates the standard deviation of points from the mean.  This method took into account the large variations around the mean, and provided a better estimate for the real value(~5.1 eV), but allowed for the old value within the range of the uncertainty. This is good because the bad value (~5.7 eV) was a result of the fact that the peak values fluctuated.  Apparently the first method of data analysis did not account for these fluctuations, but that does not mean we can throw away the values obtained for that method, because they are significant.  The second method of data analysis allows us to keep the old data because it allows for them within the uncertainty.  

The data obtained for the spacing between the valleys for mercury at this temperature was rather good.  I believe that this data was good because it did not depend so much on the rate at which you changed the acceleration potential.  The value was there, and it could not be missed by poor experimentation.  Another perk is that our data at this point agrees with the accepted values within 2.16 % for the first method of data analysis, and agrees exactly for the second method of data analysis.  


Next I would like to expose the results obtained for mercury at 180( Celsius.  The results from the peaks are in excellent agreement with the accepted values, and correspond exactly to the 6s6p3 P1 (4.89 eV) transition.  The valleys however show a deviation (~5 %)which is much smaller than the accepted value.  I believe the deviation is somewhat the reverse of the effect dealt with for the mercury  peak measurements at 150( Celsius, as given above.  The density of mercury is relatively higher at 180( Celsius, so there will be smaller currents with larger dips.  Because of this the valleys come out being somewhat jagged.  This occurred because the current would smoothly approach its maximum value, and then plunge to its minimum.  It was difficult to attain the optimum rate of change for the acceleration potential on the downside of the current slope.  This difficulty arose because if the acceleration potential changed too slowly, then small fluctuations in the current would dominate the graph and there would be many spikes in the graph.  If the accelerating potential was changed too rapidly however, then the valley would have a very sharp minimum.  That is why I believe the results from the peak spacing are more trustworthy at 180( Celsius.  


The data for neon was consistently lower than the accepted value of 18.3 eV.  Our data agreed more closely with a 2p53s1 P1 (i.e. 16.79 eV) transition than with the conventionally accepted 2p53p3 S1 (i.e. 18.3 eV) transition for neon in the Franck-Hertz experiment.  As mentioned in the data analysis section however, it was noted during the experiment that visible orangish-red light was being emitted whenever the electrons began transferring their energy (this fact was obtained from comparing computer graph data with visual confirmation).  This means that there is a discrepancy between what the computer was saying, and what we were observing.  One of two things was occurring.  Either there existed a systematic error that incessantly gave lower values for the spacing between peaks, or somehow only a small number of electrons were reaching the 2p53p3 S1 (18.3 eV) energy level, and so this value for the distance between spacings was washed out by the more prominent 2p53s1 P1 energy transition.  I now state some possibiliteis for this, which are by no measn meant to be an explicit or complete explanation, but rather a discussion of whaat I thought could be strong possibilities.  Upon examination of the first possibility, I must state that it is entirely feasible for the values to be consistently lower due to a systematic error.  Some of these systematic errors could perhaps be attributed to the settings of the anode potential (retarding potential), heater voltage, or maybe even space charge effects.  If the retarding potential was set too high, the number of electrons that would make it to the collector plate would decrease.  This shouldn’t have an effect on the peak spacings ideally, because it should work to damp down the current uniformly.  As the accelerating potential approaches a very large value (i.e. near the end of the range) however, it seems as though electrons whose collisions occur very near to the collector plate would possibly have enough distance to accelerate over the back-potential, and be ‘counted’.  Space charge effects could also be at fault.  Space charge is cause by electrons that are ejected thermionically from a metal.  The emitted electrons form a sheath of negative charge in the vicinity of the cathode, and inhibit further emission.  This effect could produce a lower value for the spacing between peaks by reducing the velocity of some of the electrons coming out of the cathode.  This would in effect spread out the peaks and valleys of the current v.s. accelerating potential graph by causing some of the electrons to reach their peak energy at a later time, relative to most of the electrons.  Yet another possibility is that the spacing decrease is due to the fact that the values were taken from the peaks, and not the valleys.  The reason for using the peaks was justified in the sense that they are apparently equally spaced.  The valleys could not be used because there were only two equally spaced valleys, with a small third valley appearing very near the end of the graph.  This smaller third valley was obviously not part of the effect being studied, because it did not correspond to the equal energy spacing, and it did not correspond to any other possible energy transition allowed in neon.  The third valley may be equally interesting in it’s own right, however for the purposes of this experiment, it is not relevant.  A possible explanation for the third valley is given at the end of this section. 


The second possibility for the explanation of the lower energy spacings between peaks could maybe be attributed to the small number of electrons reaching the 2p53p3 S1 (18.3 eV) energy level.  This possibility is somewhat far-fetched, however I thought to include it as a mere ‘possibility’.  The explanation for it could follow from the fact that most electrons make it through the atomic fog without suffering a collision.  Perhaps a portion of the electrons that do not undergo a collision at the 16.79 eV energy level, continue to gain energy and collide with a neon atom at the 18.3 eV energy transition.  This would effectively start to decrease the current just as the current began to rise again from the electrons that underwent collision at 16.79 eV (i.e. spread out the collision zone).  This could ultimately change the distance between peaks if more than one energy transition were occurring.  


Other general errors not associated with a particular set of data, but rather all of the data are presented here.  One error that could have a small effect on the peak spacing is the distribution of velocities that accompanies thermionic emission.  Another effect that could have influenced the data is that of the value of the contact potential difference.  Contact potential differences arise when current flow through dissimilar materials is completed in free space.  The contact potential should have no effect on the data ideally, because it only acts to shift the voltage scale by a constant.  The error from this comes from the fact that the contact potential difference, as obtained from my data, did not appear to be constant.  This could have the effect of shifting the data one way, but part way through a data run, shifting it a different amount.  This would change the spacing between the peaks. 

Here I attempt to give a possible explanation for the third valley in the neon data which does not correspond to any allowed energy transition in neon (see next page for graph).  The reason that the third valley is not at the same spacing as the others is explained in the following way.  At the point of the third collision, the accelerating potential is very high.  The electrons reach the third excitation energy directly in front of the collector anode.  Since the accelerating potential is so high, even though the electrons lose their kinetic energy, the electrons in a sense arc over the last potential hump.  Perhaps this is because the electrons coming in behind them sort of shovel them in (by providing a repulsive electric field from behind).  The curve drops sharply because the electrons begin losing their energy, however it climbs again because the accelerating potential is constantly increasing.  If the third valley is extrapolated, the spacing corresponds to a valley difference of approximately 17.5 eV, in accordance with the other experimental data.  This second energy valley (second part of the third valley) is a result of the electrons acquiring the excitation energy further away from the collector anode, and therefore, the current begins to drop again, in accordance with the regular ~18.3 eV spacing.

 Conclusion:


In closing it should be reiterated that the results obtained deviate somewhat from what is normally observed, however it was very apparent that energy transfer occurred only in discrete amounts, and these amounts correlated to the allowed energy transitions in the elements studied.  Numerical data will be omitted from the conclusion in the hope of preserving the qualitative aspect of the findings (also in light of the fact that the data is available in concise tabular form in the preceding sections).  For mercury at 150( Celsius, the findings upon first glance seemed to point to a higher energy transition, however after a more rigorous treatment of the data it was shown that there was an explanation for the apparent deviation.  The mercury data at 180( Celsius seemed to correlate exactly to a 4.89 eV energy transition, which is the conventionally expected energy transition in this experiment.  The data for neon seemed to be consistently lower than was expected.  This would not be a terrible result if it were truly what was being observed.  The goal of science is to interpret exactly what is observed, and not to dope results or try to fit them to some ‘standard’.  I criticized the results for neon very vigorously in hopes of exposing errors that would allow for a different interpretation of the energy transition.  This was done on firm ground because of the result that I observed photon emission from the tube.  There was absolutely no way to interpret this unless the peak spacing was ~ 5.4 % larger.  Errors were identified, and it was determined that the transition that was occurring was probably the 18.3 eV transition.  


A contact potential was also found for both mercury and neon, and it was determined to be 2.763 eV ( (0.872 eV) and ~ 2.5 eV, respectively.  
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