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Abstract: In the course of a numerical evolution of a (3+1) spacetime, numerical errors
typically result in deviations from the constraint hypersurface.  Experiences with “fully
constrained” codes [1] indicate that greater stability can be gained if the constraints are
enforced frequently throughout the simulation.  One reason for the lack of 3D constrained
evolutions performed to date is that the elliptic solves involved in enforcing the constraints can
be computationally expensive.  Thus we have been motivated to develop a fast elliptic solver
based on the O(n) multigrid method [2].  The presence of an excised region in the domain
presents a challenge which we have found a novel and simple treatment for, as described in
[3].  In that previous work, we described the solution of the Hamiltonian constraint for a single
black hole on a flat background.  In the present work, we describe the generalization of this to
the full set of constraint equations.  We detail some of the specifics of our implementation, and
give some reliminary results toward the goal of solving for the Kerr-Schild type initial data of
Bonning et al. [4].
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Physical System

• Dirichlet inner boundary conditions

• Simplified Robin outer boundary conditions
–   [r(φ-1)],r = 0  implemented normal to faces of cube

–   wi = 0

York-Lichnerowitz conformal method: Background {gij,Kij}, Physical {gij,Kij}
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TEXMEX Code Overview

• Standalone code (no CACTUS, etc…), designed as a “black box”
elliptic solver: input guess/background {gij, Kij}, output new {gij, Kij}
satisfying constraints

• Vertex-centered
• Similar to other multigrid solvers (e.g., Bruegmann, Pretorius)

– but with unique inner boundary/restriction scheme, and a few
other modifications “under the hood”

• Code for Kerr-Schild “superposition” background by Pedro
Marronetti (w/ tweaks by Matt Anderson)

• Heart of constraint solver (residual evaluator) by Matt Anderson
• Newton-Gauss-Seidel smoothing iterations
• “Extra Smoothing Region” (ESR) - solve twice as often near hole
• Simple SOR for coarse-grid solves (switches over to Gauss-

Seidel near target tolerance)
• Can run with reflection symmetries (octant, bitant)
• Working on parallelism with student Mike Vitalo
• Coarse grid inner boundary values supplied via direct copy from

fine grid points where possible, otherwise via weighted
multidirectional extrapolation

~~

(“Texas Multigrid Excision” Code)
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Implementation Details

Inner boundary points are those points which are immediately
interior to a circle of radius rmax. Here we show a fine grid and
a coincident coarse grid.

1D schematic of scheme for inner boundary and restriction scheme.  Filled circles denote normal interior points,
Xs denote excised pionts, and the open circles with Xs through them denote inner boundary points (where the
Dirichlet conditions are applied).

2D schematic of mask function, showing excised
points (X), inner boundary points (I), Extra
Smoothing Region (E), normal interior points (N),
and outer boundary points (B)
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Results: Flat Background
Convergence Plots

(Grid has 2Level-1 points along each side)

Convergence results for 3D solutions to  the Hamiltonian constraint of the form φ = 1 + 2 M /r, for runs in which
rmask=1.29, for a domain [-5,-5,-5] to [5,5,5].  Left panel: A logarithmic plot of the L2 norm of the solution error e,
showing a comparison between outer boundary conditions. Using the ``first order perpendicular" (FOP)
implementation of the Robin boundary condition, we obtain convergence results which lie on top of those
obtained using a Dirichlet outer boundary condition.  These results also run parallel to the line for perfect second
order behavior. Right Panel: A logarithmic plot of the solution error e itself, at the end of each V-cycle in the Full
Multigrid Algorithm. Here we have divided coarser grid values by appropriate powers of four in order to make the
comparison. Near the outer boundary, the magnitude of the error is roughly second order, however its shape is
resolution-dependent. This feature may arise from the use of the FOP condition.
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Results: Schwarzschild Background

Final Area of Apparent horizon (measure 1) =    50.215497
Final Area of Apparent horizon (measure 2) =    49.015306
Final Area of Apparent horizon (measure 3) =    50.215497
Final Area of Apparent horizon (measure 4) =    50.215497
Final Area of Apparent horizon (average)     =    49.915449
Exact value (16π)                                          =    50.265482

Convergence Plots
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Horizon Area (via Erin Bonning’s code)



7

Schwarzschild Background cont’d

Solution error in phi (e = φ -1) on finest grid (1293).  We expect a spherically-symmetric solution, however
the behavior of the solution along “flat” sides of the excision mask is different from the behavoir along
“staircase” (or “diagonal”) sides of the excision mask, giving rise to this “lumpy” solution.  Increasing the
resolution lowers the magnitude of these variations, but not their angular distribution.
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Future Work

 References

• Physics:

– Obtain convergent solutions for Kerr-Schild-type BBH initial data

– Study BBH binding energy as function of separation & spins

– Integrate TEXMEX w/ Matt Anderson’s constrained evolution code, to
more efficiently continue investigation of constrained evolution.

• Computer Code:

– Timing comparisons to see “how fast”

– Parallelization currently underway with student Michael Vitalo

– Add mesh refinement

1. e.g., Choptuik M W, Hirschmann E W,  Liebling S L, and Pretorius F 2003,
Class. Quant. Grav. 20, 1857; Anderson M and Matzner R A 2003 gr-
qc/0307055 ; Bonazzola S, Gourgoulhon E, Grandclement P, Novak J, gr-
qc/0406020; Schnetter E, Penn State NR Lunch, Feb 13 2004.

2. Brandt A 1977 Math. of Computation 31, 333.

3. Hawley S H and Matzner R A, Class.Quant.Grav. 21 (2004) 805.

4. Bonning E, Marronetti P, Neilsen D and Matzner R A 2003 Phys. Rev.D68,
044019.


