
Gauge Fixing and Constrained Dynamics in Numerical Relativity

Jon Allen

The Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation is
reviewed. Gauge freedom is discussed and constraints for gauge theories are derived in a general
context. The Dirac bracket is introduced and shown to provide a consistent method to remove
any gauge freedom present. Numerical stability for gauge theories is discussed and it is shown
that all gauge freedom must be fixed in order for the theory to be well-posed. Electrodynamics is
used to provide examples of the methods outlined for general gauge theories. General Relativity
is discussed in the context of canonical systems with gauge freedom. The first class constraints
of General Relativity are derived along with canonical variables similar to the BSSN formulation.
Finally the gauge freedom of General Relativity is fixed and the resulting equations of motion are
discussed.
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I. INTRODUCTION

Insert standard filler about the importance of relativity, gauge theories, and numerical simulations here. Provide
some historical context for the motivations of the machinery used here. Discuss what the questions I am seeking to
answer are and why they are important. Provide current context examples.

II. REVIEW OF GAUGE THEORIES AND HAMILTONIAN SYSTEMS

This section begins by providing a relatively self-contained introduction to gauge theories in the Hamiltonian
formulation, providing general results. Specific examples are provided in section (IV) for Electrodynamics and
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section (??) for General Relativity. The reader is assumed to have a basic familiarity with the Lagrangian and
Hamiltonian formulations along with the methods of variational calculus. A basic familiarity with exterior differential
calculus will be occasionally assumed within the notes from time to time but is not necessary in order for the casual
reader to follow along. Subsection (II A) provides a review of the general features of Lagrangian and Hamiltonian
dynamics which will be useful when working with gauge theories. For more thorough reviews of Hamiltonian
dynamics and introductions to geometric formulations see [1],[2],[3], [4], [5], [6], and [7]. In order to simplify the
discussion, throughout this section when general Lagrangian or Hamiltonian formulations are considered the system
will be expressed in a finite dimensional form. Differences between finite dimensional systems and field theories will
be noted when necessary.

Insert standard notation definitions such as:

Lowercase roman indexes from the middle of the alphabet run over spatial components, i, j, k = {1, . . . , 3}.
Lowercase greek indexes run over all space-time components, α, β, γ = {0, . . . , 3}.
Lowercase roman indexes from the beginning of the alphabet will run over tangent bundle pairs, a, b, c = {1, . . . , N},
where N is the dimension of the base space. These indexes will also be used to label primary constraints, and when
working with subspaces of the tangent or cotangent bundle.
Uppercase roman indexes from the middle of the alphabet will run over the phase space coordinates,
I, J, K,L = {1, . . . , 2N}, where N is the dimension of the base space.
Uppercase roman indexes from the beginning of the alphabet will run over all constraints, which are introduced in
subsection (II C).
Einstein’s summation convention, VαWα ≡

∑
α VαWα, will be used throughout and will apply to all indexed terms.

Phase space vectors in abstract notation will be denoted in bold, X = Xa ∂
∂qa + Xa+N ∂

∂pa
while elements of the dual

space of covariant vectors in abstract notation will be denoted with a tilde, X̃ = Xa dqa + Xa+N dpa.

A. Lagrangian and Hamiltonian Dynamics

For a given physical system modeled by a set of variables and their derivatives, { q,q,α,q,αβ , . . . }, the action,
S [q], is defined to be the functional,

S [q] ≡
∫

dt L [q, q̇] (1)

which when extremized yields the equations of motion for each of the variables q. The space of variables is called
the configuration space, M , and the velocities, q̇, at the location q ∈ M reside in the tangent space of M , TqM . The
differentiable space of all velocities at all points over M is known as the tangent bundle, TM = {TqM |q ∈ M}, and
has coordinates (q, q̇) ∈ TM . The functional in the integrand of equation (1) , L [q, q̇], is called the Lagrangian and
is a real valued functional of the tangent bundle coordinates, L : TM → R. The value returned by the Lagrangian is
a scalar and therefore will be independent of the chosen coordinate system on the tangent bundle. Extremization of
the action yields

δS [q, δq] =
∫

dt

{[
∂L

∂qa
− d

dt

∂L

∂q̇a

]
δqa +

d

dt

[
∂L

∂q̇a
δqa

]}
= 0 (2)

Unless otherwise noted, assume that the variation, δq, at the boundary takes the form

∂L

∂q̇a
δqa = C (3)

for some constant C ∈ R so that the last term of equation (2), being a total derivative, vanishes. The resulting
extremized path yields the Euler-Lagrange equations

∂L

∂qa
− d

dt

∂L

∂q̇a
= 0 (4)

The Euler-Lagrange equations form a second order differential system which govern the evolution of the physical
system modeled by the configuration space variables, q. For field theories, the Lagrangian, L, is integrated over all
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of spacetime to yield the action, S, so the total derivative in equation (2) for the finite dimensional system becomes
an integral over the spacetime boundary in the continuum.

The configuration space manifold, M , and tangent bundle, TM , are manifolds with definitions which are
independent of the Lagrangian, L, or coordinate system, (q, q̇). Because these spaces are defined without respect
to the dynamics, two physical systems, modeled by two different Lagrangians, L and L′, can be defined on the
same configuration space, M , and tangent bundle, TM . Since these manifolds, M and TM , are independent of the
dynamics, there is no natural way to define an intrinsic meaning for the velocities at a given location, q̇ ∈ TqM , and
therefore no natural way to compare these values for two distinct locations, q,q′ ∈ M with q 6= q′. Formally then,
velocities have no intrinsic meaning because there is no canonical inner product structure on the tangent bundle,
a necessary requirement in order to be able compare elements of two distinct tangent spaces, TqM and Tq′M , in a
coordinate independent manner. Although there is no natural way to compare elements of TM in general, when a
particular Lagrangian, L, is considered the Lagrangian itself can be used to define a map from the tangent bundle,
TM , to the dual space, T ?M , of all one forms over M , known as the cotangent bundle. The map from the tangent
bundle, TM , to the cotangent bundle, T ?M , is the Legendre transform, defined as

p̃ (q, q̇) ≡ δL [q, q̇]
δq̇

(5)

taking the tangent bundle coordinates, (q, q̇), into coordinates on the cotangent bundle, (q, p̃), with p̃ being one
forms which are dual to the velocities, q̇. In mechanics, the coordinates of T ?M defined by equation (5), p̃, are known
as canonical momenta, and the collection of all cotangent bundle coordinates, (q, p̃) ∈ T ?M , defines the phase space.
For an N dimensional configuration manifold, the phase space will be a 2N dimensional manifold with coordinates,
{qa, pa} for a ∈ 1 . . . N , defined by the N conjugate pairs. Canonical momenta, pa, are often referred to as conjugate
momenta with respect to the position variable, qa, with which it forms the conjugate pair, (qa, pa). Each conjugate
pair present defines a single degree of freedom for the physical system, so that a 2N dimensional phase space has N
degrees of freedom.

Once elements of the tangent bundle, TM , can be identified with elements of the cotangent bundle, T ?M , an inner
product can be constructed over M by defining the norm, ||·||, as

||q̇|| ≡ δL [q, q̇]
δq̇

· q̇ = paq̇a ≡ p̃ · q̇ (6)

which sends elements of the tangent bundle to scalar values, TM → R. Because the Lagrangian, L, is invariant
under changes of the configuration space coordinates, and subsequent changes in the tangent bundle coordinates, the
norm, equation (6), will also be invariant under coordinate changes. This coordinate invariant value is well defined,
for a given Lagrangian, and can therefore be used to make meaningful comparisons of velocities, q̇, in a coordinate
independent way. In mechanics, the norm, ||q̇||, is equal to twice the kinetic energy, T

T ≡ 1
2
||q̇|| = 1

2
p̃ (q, q̇) · q̇ (7)

which should be a familiar physical quantity, invariant under changes of the configuration space coordinates. Assume
for the remainder of this subsection that the Legendre transform, equation (5), is a bijection, mapping unique elements
of TM to unique elements of T ?M . The case in which the Legendre transformation is not a bijection will be examined
in subsection (II B). When the Legendre transform is a bijection, an inverse map exists allowing unique elements of the
tangent bundle, (q, q̇) ∈ TM , to be written as unique expressions of the cotangent bundle coordinates, (q, p̃) ∈ T ?M .
Expressing all velocities, q̇, as functions of the phase space coordinates, (q, p̃), allows the dynamics to be expressed
entirely in phase space.

Define the canonical Hamiltonian as

H ≡ p̃ · q̇− L [q, q̇] (8)

Treating the coordinate components of q, q̇, and p̃ independently, the total variation of H yields

δH = q̇aδpa −
δL

δqa
δqa +

(
pa −

δL

δq̇a

)
δq̇a (9)

Using the definition of the momenta, equation (5), the coefficient of δq̇a vanishes identically, showing that the canonical
Hamiltonian, H, is independent of the velocities q̇. Using the canonical Hamiltonian, equation (8), define the canonical
action as the functional of the phase space variables, (q, p̃), given by

S [q, p̃] ≡
∫

(padqa −H [q, p̃] dt) =
∫

dt L [q, q̇ (q, p̃)] (10)
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Extremizing the canonical action yields

δS [q, p̃, δq, δp̃] ≡
∫

dt

{[
q̇a − δH

δpa

]
δpa −

[
ṗa +

δH

δqa

]
δqa +

d

dt
[paδqa]

}
= 0 (11)

Using the definition of the momenta, equation (5), and the boundary condition placed on the variation δq, equation (3),
the last term in equation (11) vanishes. The resulting extremized path in phase space yields Hamilton’s equations

dp̃
dt

= −δH [q, p̃]
δq

(12)

dq
dt

=
δH [q, p̃]

δp̃
(13)

Note that no restriction on the variation of the momenta, δp̃, at the boundary is necessary to extremize the canonical
action. Using the Legendre transform, equation (5), along with canonical Hamiltonian, equation (8), and the canonical
action, equation (10), to express the extremized path in phase space coordinates, (q, p̃), as an extremized path in
the tangent bundle coordinates, (q, q̇), shows that the Lagrangian and Hamiltonian formulations are equivalent.
Numerically, it is often more convenient to evolve Hamilton’s equations, which form a first order differential system
of 2N equations, than the N second order differential system given by the Euler-Lagrange equations.

Treating the 2N coordinates of the phase space independently allows an exterior calculus to be introduced on the
cotangent bundle. In the space of one forms with coefficients taking values in phase space, define the Poincaré one
form as

λ̃ ≡ padqa (14)

Treating coordinate time, t, as a configuration space variable, the Hamiltonian one form is defined as

Λ̃ ≡ λ̃−Hdt (15)

allowing the canonical action to be written as

S [q, p̃] =
∫

dt Λ̃ (16)

In the space of two forms with coefficients taking values in phase space, the Poincaré two form is defined as the
exterior derivative, in phase space, of the Poincaré one form

ω2 ≡ dλ̃ = dpa ∧ dqa (17)

The Poincaré two form, ω2, defines a symplectic structure in the phase space, T ?M . A compact notation frequently
used when dealing with Hamiltonian systems is given by writing the 2N phase space coordinates, (q, p̃), as

z1 ≡ q1, . . . , zN ≡ qN (18)

zN+1 ≡ p1, . . . , z
2N ≡ pN

The elements of the phase space coordinates, z, will be denoted as zK , with index, K, which runs over the 2N
dimensions of T ?M . In the compact notation, the Poincaré two form of equation (17) becomes

ω2 = JKL dzK ∧ dzL (19)

In canonical phase space coordinates, JKL, defines the canonical form given by

J ≡ JKL =
1
2

(JKL − JKL) =

 0 −I

I 0

 (20)

with I being the N ×N identity matrix. Transformations of the phase space coordinates which preserve the canonical
form are known as canonical transformations. Any two canonical transformations can be combined to yield a third,
and each canonical transformation is invertible, whence canonical transformations form a group.
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Dual to the space of one forms, resides the space of vectors with coefficients which take values in the phase space.
Define a basis for this vector space, dual to the basis one forms dz, as the vectors ∂a satisfying

∂K

(
dzL

)
= dzL (∂K) = δL

K (21)

In general, the tangent bundle over T ?M will be the vector space defined as

V ≡
{
X = XK ∂K | XK ∈ T ?M

}
(22)

with the cotangent bundle over T ?M given by the vector space dual to V, defined as

V? ≡
{
W̃ = WK dzK | WK ∈ T ?M

}
(23)

such that the basis vectors for V and dual basis for V? satisfy equation (21).
For any function, G, of the phase space coordinates which is differentiable at least once, the symplectic form,

equation (19), defines a vector field, VG ∈ V, dual to the one form, dG ∈ V?, which satisfies

dG ≡ dG

dqa
dqa +

dG

dpa
dpa =

dG

dzL
dzL ≡ ω2 (VG, ·) (24)

The vector field, VG, defines a flow in phase space, parameterized by τ , satisfying

dz
dτ

= VG [z (τ)] (25)

which defines the components of VG, given by

VG ≡ V K
G ∂K (26)

with K ∈ {1, . . . , 2N}. This flow, parameterized by τ , defines integral curves in the phase space along which G
remains constant satisfying

dG

dτ
= 0 =

∂G

∂τ
+

∂G

∂zK

dzK

dτ
(27)

Since the only restriction placed on G is that it be differentiable at least once, equation (27) shows that every
differentiable phase space function will have an associated flow in phase space. Consider now two differentiable
functions, G, and F , of the phase space variables. Associated with G and F are the respective vector fields VG and
VF generating flows parameterized by τG and τF . Since G and F are functions only of the phase space coordinates,
∂G
∂τ = ∂F

∂τ = 0 for all τ . The Poisson bracket of G and F is defined to be

[G, F ] ≡ dG (VF )− dF (VG) = ω2 (VG,VF ) (28)

and is often denoted

[G, F ] = JLK ∂L (G) ∂K (F ) (29)

with JLK defining the cosymplectic form. In canonical coordinates, the cosymplectic form is given by

JLK =
1
2

(
JLK − JLK

)
=

 0 I

−I 0

 (30)

and is the inverse of the canonical form defined by equation (20). The Poisson bracket, [G, F ], calculates the difference
of a given phase space function, F , along the flow generated by G. In general, given two phase space functions, G and
F , the Poisson bracket will generate a third phase space function, [G, F ] = C. The resulting phase space function, C,
is referred to as the commutation relation. When the phase space function, F , is constant along the flow generated
by G, [G, F ] = 0, the functions F and G commute. The Hamiltonian, H, generates a Hamiltonian vector field, with
an associated flow which is parameterized by coordinate time, t. Using the Poisson bracket, the evolution equations
for the phase space coordinates, equations (12) and (13), become

dz
dt

=
∂z
∂t

+ [z,H] = [z,H] (31)
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In general, for some function F of the phase space coordinates, z, which may have a dependence on the coordinate
time, t, the total time derivative of F will take the form

dF

dt
=

∂F

∂t
+ [F,H] (32)

Any function F which is constant as the system evolves must satisfy, dF
dt = 0. In the case where the phase space

function F and the Hamiltonian, H, are time-independent, any F which commutes with the Hamiltonian, [F,H] = 0,
will remain constant as the system evolves. The vector field generated by any phase space function, F , which commutes
with the Hamiltonian, H, will also be known as a Hamiltonian vector field, and will commute with the Hamiltonian
vector field generated by H.

For canonical phase space coordinates, (q, p̃), the commutation relations amongst the phase space coordinates are

[qa, pb] = δa
b (33)

All other commutation relations amongst the phase space coordinates vanish. Consider the case in which the phase
space coordinates include τ , the parameterization of the flow associated to the phase space function G. The Poisson
bracket [τ,G] yields

[τ,G] =
d

dτ
τ = 1 (34)

showing that G is the canonical momenta conjugate to τ . In general, when dealing with either canonical or non-
canonical phase space coordinates, the cosymplectic form, JKL, is defined by the commutation relations amongst the
phase space coordinates, z,

JLK ≡
[
zL, zK

]
(35)

In non-canonical coordinates, the elements of the cosymplectic form, JLK , can be functions of the phase space
coordinates, JLK (z). Whenever the cosymplectic form, JLK , is invertible, the symplectic form, JIK , can be defined
as the inverse of JLK so that

JILJLK = δI
K (36)

When a distinction is necessary, the canonical cosymplectic form will be denoted JLK
C . The equations of motion for

the phase space coordinates take the compact form

żL = JLK ∂H

∂zK
(37)

for both canonical or non-canonical phase space coordinates. In any phase space coordinates, given two phase space
functions, G and F , the symplectic form, ω2, must map vectors over phase space to the dual space, equation (24),
and must be closed, dω2 = 0, equation (17). Using the definition of the Poisson bracket in terms of the symplectic
form, equation (28), and insisting that partial derivatives commute, so that dd = 0, the Poisson bracket must satisfy
the Jacobi identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 (38)

for any phase space functions A, B, and C.
The dynamics generated by the Lagrangian, L, and Hamiltonian, H, will yield a unique extremal for the action,

but the Lagrangian and Hamiltonian are not unique themselves. Consider the addition of a total derivative, dF
dt ,

to the Lagrangian. The modified Lagrangian, L′ ≡ L + dF
dt , can change the value of the action, S [q], but will not

change the extremal path as long as the total derivative which is added does not violate the boundary conditions of
equation (3). Similarly, in the Hamiltonian formulation, the addition of a total derivative, −dF

dt , to the Hamiltonian
will change the canonical action, S [q, p̃], by a boundary term, ∆F ≡ F (t1) − F (t0), but will leave the extremal
path in phase space invariant as long as equation (3), expressed in phase space coordinates, remains satisfied. Using
the Legendre transformation, equation (5), and the boundary term generated by the variation yielding the extremal
path, equation (3), any total derivative added to the Hamiltonian, −dF

dt , leaving the equations of motion invariant
can be written as a canonical transformation. The function F is called the generating function of the canonical
transformation and, including the canonical pair (t, H) as phase space coordinates, satisfies

Λ̃ (z̄) = Λ̃ (z)− dF (z) (39)
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with the new canonical coordinates, z̄, defined as functions of the initial canonical coordinates, z. Since the Poincaré
one form Λ̃ (z̄) differs from the original Poincaré one form Λ̃ (z̄) by an exact derivative, dF (z)), the Poincaré two form
remains unchanged

Ω2 ≡ dΛ̃ (z̄) = dΛ̃ (z̄) + ddF (z) ≡ dΛ̃ (z̄) (40)

Since the canonical form, Ω2, is preserved, by definition, the transformation from z to z̄ is canonical, whence F
generates a canonical transformation. The new canonical coordinates, z̄, are defined as functions of the initial
canonical coordinates, z, by

[
zI , F

]
=

1
2

[
zI − z̄MJML

(
dz̄L

dzK

)
JIK

]
(41)

so that F must take the form

F =
1
2

∫ {
zIJIK dzK − z̄MJML dz̄L

}
(42)

showing that the coordinate transformation generated by F must be an invertible transformation between the canonical
phase space coordinates z and z̄. Although the transformation generated by F must be invertible, equation (41) shows
that the generating function F is only uniquely defined up to the addition of a constant multiple of any phase space
function C satisfying dC = 0, since the Poincaré one form, defining the phase space coordinates, will only be altered
by a term d (F + C) = dF , showing that F + C and F yield the same canonical transformation.

Using the canonical Hamiltonian, H, to generate canonical transformations yields

dH = ∂KHdzK = żL (z) JLK dzK (43)

which is exact. As a result, when the canonical Hamiltonian is independent of time, ∂tH = 0, adding any constant
multiple of dH to the Hamiltonian one form, equation (15), will leave the canonical form invariant. Additionally,
canonical transformations of this form will also leave the extremal path invariant since the canonical Hamiltonian
H itself will remain unchanged. Interestingly, using equation (43), the evolution in phase space, equation (37),
can be interpreted as a continuous infinitesimal canonical transformation generated by the canonical Hamiltonian,
H, multiplied by the constant infinitesimal dt. In general, any time-independent phase space function, GC , which
commutes with the canonical Hamiltonian, H, for all time t defines a constant of motion for the physical system.
Since the constants of motion, GC , always commute with the canonical Hamiltonian, H, the physical content of the
theory will remain invariant under continuous infinitesimal canonical transforms generated each GC . For example,
time-independent Hamiltonians satisfy, [H,H] = 0, and so H will be a constant of motion with the value of the
Hamiltonian, H, corresponding to the total energy of the system. In phase space coordinates, z, the infinitesimal
transformations generated by the constant of motion GC and infinitesimal constants, ε, will be

δ̄CzL ≡ ε
[
zL, GC

]
(44)

Using the time-independent canonical Hamiltonian, H, as an example, H generates the familiar infinitesimal canonical
transformation

δ̄HzL ≡ żLdt = dt
[
zL,H

]
(45)

In addition to the constants of motion, the one dimensional groups of canonical transformations generated by the
constants of motion, GC , will also be invariant under all canonical transformations, and so correspond to physical
values which are called global symmetries of the physical system. Returning to the example of systems with a time-
independent canonical Hamiltonian, H yields the total energy, E, and generates the group associated with a global
symmetry under constant time translations corresponding to conservation of energy. This is the Hamiltonian form of
Nöther’s first theorem, which states that a general differential system will have one conserved quantity corresponding
to each continuous symmetry, with a continuous symmetry of a differential system defined by a continuous group of
transformations mapping the space of solutions to the differential system into itself [8].

B. Singular Legendre Transformations

Often physical systems will be described by a Lagrangian, L, which generates a Legendre transform, defined by the
map from TM → T ?M in equation (5), which is not a bijection. In this case, the map from the tangent to cotangent
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bundle will be a singular Legendre transform, generated by a singular Lagrangian. When the Legendre transform is
singular, the square symmetric N ×N matrix

T ≡ Tab ≡
δ

δq̇a

(
δL

δq̇b

)
≡ δpa

δq̇b
(46)

will not have an inverse. As a result, some of the velocities, q̇, will not be expressible as functions of the phase space
coordinates, (q, p̃). The rank of T is given by the dimension of the maximal square symmetric submatrix of T which
is invertible, and is equal to the number of linearly independent columns of T. The rank of T, given by the integer
M with M < N , is assumed to be constant throughout phase space allowing M of the momenta to be inverted in
terms of M velocities. The remaining N −M momenta, which are not invertible, will take the form

pc (q, p̃) = φc (q, p̃ (q, q̇)) (47)

for phase space functions φc (q, p̃ (q, q̇)) which are independent of the N − M non-invertible velocities q̇c. If the
functions φc were to depend on the non-invertible velocities, q̇c, then equation (47) would yield an invertible relation,
in contradiction with the assumption that the rank of T is M . Under an appropriate change of coordinates on the
tangent bundle, the matrix T can be brought into block form with the maximal invertible subblock given by the
M ×M square symmetric matrix O. In these coordinates, the Lagrangian will take the form

L = q̇aOabq̇
b + Aaq̇a + φcq̇

c + B (q) (48)

where a, b ∈ {1, . . . ,M}, c ∈ {1, . . . , (N −M)}, and B (q) is independent of any velocities, q̇. The terms in
equation (48) which are linear or independent of the velocities, Aaq̇a and B (q) respectively, will not affect the
rank of T, and therefore will not affect the maximal invertible subblock, O. From equation (48), the velocities q̇c

will appear at most linearly in the Lagrangian, suggesting that there is a transformation to coordinates in which the
N −M phase space functions, φc, vanish. In these coordinates T will take the form

Tab =
δ

δq̇b

(
δL

δq̇a

)
=

 0 0

0 Ocd

 (49)

with O the M × M maximal invertible subblock of T. The form of equation (48) suggest that such a coordinate
transformation can be accomplished by adding a total derivative, dF

dt , to the action which satisfies

dF

dt
=

∂F

∂t
+

∂F

∂qa
q̇a +

∂F

q̇b
q̈b + · · · = −φcq̇

c (50)

for some function F of the tangent bundle coordinates, (q, q̇). In phase space coordinates

dF

dt
=

∂F

∂t
+

∂F

∂qa
q̇a +

∂F

∂pb
ṗb = −φcq̇

c (51)

The addition of a total derivative satisfying equation (50) will yield a Lagrangian, L′ ≡ L + dF
dt , which generates

N −M canonical momenta of the form

pc = 0 (52)

Since these expressions for the momenta, pc = 0, have been derived using a specific coordinate system, it is not possible
to drop the N −M momenta from the phase space without restricting the permissible canonical transformations, and
consequently fixing the value of the boundary terms present in the action. In particular, a given solution in phase
space was shown to evolve under a continuous set of canonical transformations which are generated by the canonical
Hamiltonian, H, consequently, the form of the non-invertible momenta is not even guaranteed to be invariant as the
system evolves.

C. Constraints in the Hamiltonian Formalism

Equations expressing relations amongst the solution space coordinates which must be preserved by the dynamics
are constraints. In the Lagrangian formulation, constraints are introduced through equations of constraint, taking the
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form f (q, q̇) = 0, and are imposed by modifying the Lagrangian to include multiples of the equations of constraint.
These multiplying factors are known as Lagrange multipliers and take values such that the equations of constraint
hold. A constrained Lagrangian, LC , with Lagrange multipliers, λA, and constraints, fA (q, q̇) = 0 takes the form

LC ≡ L + λAfA (53)

with L denoting the unconstrained Lagrangian. Constraints which uniquely determine the Lagrange multiplers are
holonomic. Constraints which are not holonomic are non-holonomic and do not uniquely determine the Lagrange
multipliers. The equations of constraint establish relations amongst the N configuration space coordinates, q, and
the velocities, q̇, reducing the dimension of the space of solutions. For holonomic constraints, all Lagrange multipliers
are uniquely determined, whence the equations of motion can be inverted to yield the equations of constraint. Solving
both the equations of motion and equations of constraint simultaneously, the dimension of the configuration manifold,
M , can be reduced by one for each constraint present, reducing the tangent bundle, TM , by two dimensions. Non-
holonomic constraints are not able to reduce the space of solutions since the undetermined Lagrange multipliers
present do not restrict solutions to the equations of motion to a submanifold of the tangent bundle which is itself a
tangent bundle to some reduced configuration space. In the Hamiltonian formulation, for each holonomic constraint
present, one degree of freedom is removed from the phases space. When moving to the Hamiltonian formulation from
the Lagrangian formulation when non-holonomic constraints are present, the Lagrange multipliers are not uniquely
determined by the equations of motion and must be accounted for in the phase space coordinates, therefore non-
holonomic constraints do not allow the phase space to be reduced.

In the Hamiltonian formulation, the canonical Hamiltonian, H, derived from the constrained Lagrangian,
equation (53), will generate dynamics, consistent with solutions to the Euler-Lagrange equations, which preserve
the constraints fA (q, q̇ (q, p̃)) = 0. If the canonical Hamiltonian, H, is derived from a singular Lagrangian, the
N −M expressions of equation (47) can be expressed as the N −M constraints

pc − φc (q, p̃ (q, q̇)) = 0 (54)

with φc being a function of the invertible phase space coordinates. Constraints imposed on the phase space coordinates
resulting from a Lagrangian formulation generating a singular Legendre transform are known as primary constraints.
Using the definition of the canonical momenta, equation (5), the constraints of equation (54) must be generated
by a Lagrangian which is at most linear in the non-invertible velocities, q̇c. Since the Lagrangian can not involve
terms which are quadratic in the non-invertible velocities, q̇c, the resulting Euler-Lagrange equations generated by
extremizing the action, S, can not completely determine the dynamics for q̇c. Transforming to the coordinates derived
in subsection (II B) in which all N − M non-invertible momenta vanish, equation (52), the Lagrangian, L, will be
independent of the non-invertible velocities, q̇c, yielding the constraints pc = 0. In these coordinates, the N − M
configuration space variables, qc, will have velocities which do not appear in the Lagrangian, and so must generate
N −M Euler-Lagrange equations of the form

χc (q, q̇) ≡ ∂L

∂qc
− d

dt

∂L

∂q̇c
=

∂L

∂qc
=

δL

δqc
= 0 (55)

revealing that the Lagrangian will be independent of the variables qc as well as the velocities q̇c. Since the Lagrangian
is independent of the variables qc and velocities q̇c, the dynamics leaves these values undetermined. The dynamics
generated must satisfy equation (55), thereby defining N −M more constraints, in addition to the N −M primary
constraints, which are inherent in the system. Continuing to work in the coordinate system in which the Lagrangian,
L, is independent of the coordinates (qc, q̇c), define a new Lagrangian, L′, as the value of the Lagrangian L evaluated
with all undetermined terms set equal to zero, qc = q̇c = 0. The Lagrangian L can then be expressed as

L [q, q̇] = L′ [q, q̇] + qcχc [q, q̇] + q̇cpc [q, q̇] (56)

modulo terms which do not affect the Legendre transform or the dynamics. The form of L in equation (56) shows
that the 2(N −M) coordinates, (qc, q̇c), act as undetermined Lagrange multipliers for the 2(N −M) non-holonomic
system. Although these results were derived in a coordinate system in which the Lagrangian is independent of the
configuration space variables qc and velocities q̇c, no canonical transformation can remove the 2(N−M) undetermined
functions present in the formulation. Consequently, all primary constraints in the Hamiltonian formulation will be
the direct result of non-holonomic constraints present in the Lagrangian formulation.

In order for the primary constraints to be satisfied under the evolution generated by the canonical Hamiltonian,
all of the constraints must commute with H, since only then will they continue to vanish as the system evolves.
Furthermore, as shown in subsection (II B), the form of the primary constraints can change as the result of a canonical
transformation and so should be designated distinctly from statements which retain their form under all acceptable
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canonical transformations. In order to avoid confusion with statements which remain true throughout phase space,
the symbol ≈ is used for weak equalities, which are equations that will be true only when all constraints are satisfied.
Weak equalities are not valid throughout phase space since they will be true only while the evolution satisfies the
constraints, whence they can not be used to reduce the dimension of the phase space directly. The primary constraints
are only weakly equal to zero and so will be expressed as

pc ≈ 0 (57)

The requirement that the primary constraints commute with the canonical Hamiltonian leads to consistency
constraints which take the form

[pc,H] = χc (q, p̃) ≈ 0 (58)

and must weakly vanish in order for the primary constraints to be satisfied as the system evolves. The constraints,
χc ≈ 0, generated by the primary constraints are often referred to as secondary constraints. Constraints which are
weakly equal to zero are said to be weakly vanishing, and two phase space functions which generate a weakly vanishing
commutation relation weakly commute. A constraint or commutation relation which is identically zero is called strongly
vanishing. Strong equalities are valid throughout phase space, whether or not weak equalities are satisfied, and will
be denoted with the standard equal sign.

The process of finding consistency constraints must be continued until the set of all consistency constraints, along
with the primary constraints, vanish. That is, if χc 6≈ 0 after all weak equalities are evaluated then χc must generate
a further constraint on the system

χ′c ≡ [χc,H] = χ̇c (q, p̃) ≈ 0 (59)

When a complete set of constraints is found such that all constraints generated by the N −M primary constraints,
pc ≈ 0, along the flow in phase space generated by the canonical Hamiltonian weakly vanish, no further constraints
are present. The complete set of all constraints, primary and all consistency constraints, imposed on the system will
be denoted

CA = {pc, χa, χ′b, . . . } (60)

with the label A running over all constraints. The submanifold of phase space on which all constraints vanish defines
the constraint manifold. If all constraints are necessary to define the constraint manifold uniquely, then the set of
constraints is irreducible, otherwise the set of all constraints will be reducible. Reducible sets of constraints will not
all be independent, allowing some constraints to be written as vanishing functions of the remaining constraints. For
all examples considered here, the set of all constraints will be irreducible and will contain each of the primary first
class constraints, pc ≈ 0, which will generate a single consistency constraint, χc ≈ 0, that weakly commutes with the
canonical Hamiltonian. These physical systems will have a total of 2(N −M) weakly vanishing constraints defining
a constraint manifold with 2N − 2(N −M) = 2M dimensions.

The distinction between primary and consistency constraints, as pointed out by Dirac [9], is relatively unimportant
compared to the distinction made between constraints which have a weakly vanishing commutation relation with all
other constraints and those which have a non-vanishing commutation relation with at least one other constraint.
Constraints which commute with all other constraints are first class, while those which have a non-vanishing
commutation relation with at least one other constraint are second class. For all examples considered here, all
primary and consistency constraints generated by the Lagrangian will be first class. The first class constraints, CA,
of a theory will be closed under the Poisson bracket, satisfying

[CA, CB ] = ΓC
ABCC ≈ 0 (61)

with ΓC
AB defining the structure coefficients. The commutation relations amongst the first class constraints is known

as the first class constraint algebra, often shortened to just constraint algebra when no second class constraints are
present. When the constraint algebra is defined by structure coefficients which are constant matrixes, the ΓC

AB are
known as the structure constants. First class constraints which generate structure coefficients that are not constant
matrixes but rather functions of the phase space variables are sometimes also referred to as business class constraints.
All properties derived here for first class constraints will also to apply to business class constraints, so no distinction
will be made. Any phase space function, G, satisfying

[G, CA] ≈ 0 (62)
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for all first class constraints is referred to as a first class function. In particular, the canonical Hamiltonian, H, used
to derive the consistency constraints will be a first class function, satisfying equation (62), and is referred to as the
first class Hamiltonian, HFC . The first class Hamiltonian, HFC , will always be assumed to be time-independent,
satisfying [HFC ,HFC ] ≈ 0. As a result, all first class constraints must also be time-independent in order to commute
with the first class Hamiltonian as the system evolves. The first class Hamiltonian will then be associated with the
total energy of the system, and symmetry under global time translations will correspond to conservation of energy.
It is important to note that the first class constraint algebra, equation (61), is assured to close only on the constraint
manifold, where all constraints vanish, so it does not make sense to talk about the first class constraint algebra
elsewhere in phase space. It is also true that first class functions are only defined on the constraint manifold, and in
general will have non-vanishing commutation relations with the first class constraints elsewhere in phase space. This
includes the first class Hamiltonian, HFC , which generates the dynamics. As a result, the phase space dynamics will
only be meaningfully defined for systems which remain on the first class constraint manifold.

D. Gauge Freedom and the Extended Hamiltonian

Consider the first class Hamiltonian, HFC , derived in coordinates in which the primary constraints take the form
pc ≈ 0. The primary constraints, pc ≈ 0, can not be present in the first class Hamiltonian, HFC , since the theory does
not provide canonical evolution equations for the configuration space variables qc which are conjugate to the vanishing
momenta. Since the first class Hamiltonian, HFC , is a first class function, any multiple of first class constraints can
be added to the Hamiltonian without modifying the constraint manifold or constraint algebra. The addition of some
combination of the first class constraints to the first class Hamiltonian corresponds to a change in the undetermined
multipliers of the non-holonomic constraints in the Lagrangian formulation. Therefore, the physically meaningful
content of the theory will remain unchanged whether the dynamics are generated by the first class Hamiltonian, HFC ,
or a Hamiltonian defined by the addition of some combination of the first class constraints, CA, to the first class
Hamiltonian. These observations led Dirac to introduce the total Hamiltonian

HT ≡ HFC + λcpc (63)

with the coefficients of the N −M primary constraints, given by the N −M undetermined Lagrange multipliers λc,
providing dynamical equations for the configuration space variables qc. Although the total Hamiltonian, HT , will
provide evolution equations for all phase space coordinates, it is not the most general extension to the first class
Hamiltonian, HFC , since the variables qc, which multiply the secondary constraints, χc ≈ 0, are no longer completely
arbitrary, having their velocities specified by the Lagrange multipliers λc. The most general extension to the first class
Hamiltonian, HFC , must then include contributions from all first class constraints, CA, with undetermined Lagrange
multipliers, λA, yielding the extended Hamiltonian

HE ≡ HFC + λACA (64)

On the first class constraint manifold HE ≈ HT ≈ HFC , so the first class Hamiltonian, total Hamiltonian, and
extended Hamiltonian will all yield the same physical results. Since the value of first class functions will agree for
the dynamics generated by either the first class Hamiltonian, HFC , total Hamiltonian, HT , or extended Hamiltonian,
HE , physically meaningful quantities must be first class functions so that the addition of terms involving the first
class constraints will not affect their dynamics. These physically meaningful quantities are called observables, which
are defined to be non-vanishing first class functions of the phase space variables. As an example, when the Lagrangian
is not singular, the theory has no first class constraints and so all phase space coordinates represent physically
meaningful content. Transformations of the phase space coordinates which leave the observables invariant define
gauge transformations with the group of all gauge transformations defining the gauge group. The ability to perform
gauge transformations amongst the canonical phase space variables is known as gauge freedom. In the extended
Hamiltonian, the gauge freedom of the theory is embodied in the undetermined multipliers λA which can be any
function of the phase space coordinates, z, as well as the coordinate time, t.

Consider an infinitesimal canonical transformation generated by some sum of first class constraints, CA, multiplied
by infinitesimals, εA, defining

G0 = εACA ≈ 0 (65)

The generating function G0 will satisfy

[G0,HFC ] ≈ [G0,HT ] ≈ [G0,HE ] ≈ 0 (66)
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for all values of εA, including arbitrary functions of the phase space coordinates and coordinate time, t, and the
infinitesimal variation vector in phase space generated by G0 will have components

δ̂zL ≡
[
zL, G0

]
(67)

Because G0 is a weakly vanishing function of the first class constraints it will weakly commute with all first class
functions, whence the variation δ̂z must leave the constraint manifold and all observables invariant. Since this must
be true for any value of εA, the collection of all first class constraints, CA ≈ 0, define the generators of gauge
transformations.

E. Gauge Fixing and the Dirac Bracket

When two phase space functions G and F have a non-vanishing commutation relation throughout a neighborhood of
phase space, thereby satisfying [G, F ] 6= 0 for all z in some neighborhood of z0 denoted by U0, then the commutation
relation can be inverted to define a surface in phase space with coordinates on the surface defined by the value of the
functions G and F in the neighborhood U0. For example, any canonical pair (qa, pa) will generate the commutation
relation [qa, pa] = 1, which is independent of the value of the phase space coordinates themselves and therefore valid
throughout phase space, and, somewhat trivially then, the commutation relation can be inverted to define a surface
in phase space with coordinates on the surface given by the values of qa and pa. The ability of two phase space
functions, F and G, which generate an invertible commutation relation to act as the coordinates of a surface in phase
space is related directly to the non-vanishing of their Lagrange bracket defined as

{G, F} ≡ ∂qn

∂G

∂pn

∂F
− ∂qn

∂F

∂pn

∂G
(68)

In order for G and F to act as surface coordinates, at least for some neighborhood U0, the Lagrange bracket must not
vanish, {G, F} 6= 0 for all z ∈ U0. Consider then two phase space functions, G and F , which may or may not generate
a nowhere vanishing commutation relation, along with two constraints, C = 0 and A = 0, defined throughout the
neighborhood U0, which have a nowhere vanishing Lagrange bracket, {C,A} 6= 0. It is then possible to construct a
bracket which, in the neighborhood U0, yields the value of [F,G] restricted to the surface C = A = 0 by removing the
components of the phase space flow along both F and G which project onto the surface defined by C = A = 0. This
bracket, denoted [·, ·]D, of any phase space function, F , with either constraint, A or C, must satisfy

[F,C]D = [F,A]D = [G, C]D = [G, A]D = 0 (69)

for any F,G in the neighborhood U0, and must also satisfy the Jacobi identity

[E, [F,G]]D + [G, [E,F ]]D + [F, [G, E]]D = 0 (70)

for any phase space functions E, F and G. The generalization of the Poisson bracket which manifestly satisfies the
constraints imposed on the Hamiltonian system, satisfying equations (69) and (70), is known as the Dirac bracket.
For a collection of 2L constraints, ~S = {S1, . . . ,S2L}, which are surface forming in some neighborhood U0, the Dirac
bracket of any two phase space functions G and F will be

[F,G]D ≡ [F,G]− [F,SD] δDA {SA,SB} δBE [SE , G] (71)

It should be clear that the number of constraints, 2L, must be even in order for the collection of constraints to
be surface forming, otherwise the resulting bracket will not be symplectic, and thus will not satisfy equation (70).
Furthermore, because the surface is defined throughout some neighborhood of phase space by the vanishing of the
constraints, SA = 0, the constraints must be strongly vanishing since weakly vanishing constraints are defined only on
the constraint manifold. The requirement that the Lagrange bracket of the constraints nowhere vanish is a requirement
that the constraint commutation matrix defined by

DAB = [SA,SB ] (72)

be invertible. The relation between the constraint commutation matrix and the Lagrange bracket of the constraints
satisfies

2L∑
B=1

{SA,SB}DBC = δAC (73)
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When the constraint commutation matrix, equation (72), is invertible, the Dirac bracket, equation (71), for any
arbitrary phase space functions F and G, will be given by

[F,G]D ≡ [F,G]− [F,SA]DAB [SB , G] (74)

where DAB denotes the inverse to the constraint commutation matrix of equation (72). In particular, for any phase
space function F , the Dirac bracket yields [F,SA]D = 0 for any of the 2L constraints SA = 0, showing that [·, ·]D
satisfies equation (69).

When dealing with gauge theories, the first class constraints will generate a vanishing constraint commutation
matrix on the constraint manifold, because the first class constraint algebra is closed, and therefore can not be
used to construct a Dirac bracket. This will be true only on the first class constraint manifold, but the theory
offers no natural way to define the commutation relations amongst the first class constraints off of the constraint
manifold. Consider a minimal set of second class constraints, SA, imposed upon the system in order for the constraint
commutation matrix generated by the set of all first class and second class constraints to be invertible. Because
the first class constraints weakly commute amongst themselves, it will be necessary to impose a minimum of one
independent second class constraint for every independent first class constraint present. Assuming a minimal set of
second class constraints, SA, has been found the constraint commutation matrix of all second class and first class
constraints can be inverted. For a gauge theory with L first class constraints, denote the set of all constraints, second
class and first class, as

~D ≡ {C1, . . . , CL,S1, . . . ,SL} (75)

with components, DA, having an index, A, which runs over all 2L constraints. Once a minimum set of second class
constraints have been found, the constraint commutation matrix, DAB = [DA,DB ], will be invertible and the resulting
Dirac bracket will generate evolution equations for the original canonical phase space coordinates, z, given by

[z,HFC ]D ≡ [z,HFC ]− [z,DA]DAB [DB ,HFC ] (76)

The evolution equations for the canonical phase space coordinates, z, will be identical to those generated by the
Hamiltonian

HD ≡ HFC + ΛADA (77)

with Lagrange multipliers, ΛA, given by

ΛA ≡ DAB [DB ,HFC ] (78)

This result shows that imposing a minimal set of second class constraints on the system, thereby allowing the constraint
commutation matrix generated by the set of all first class and second class constraints to be inverted, uniquely fixes
all of the undetermined multipliers present in the extended Hamiltonian, HE . Once all Lagrange multipliers have
been uniquely fixed, no gauge freedom will remain, as can be seen by considering any variation, δ̂z, generated by any
first class constraint using the Dirac bracket. Such variations will satisfy

δ̂z =
[
z, εACA

]
D
≡ 0 (79)

because the Dirac bracket satisfies equation (69). The process of removing all gauge freedom is called gauge fixing,
and equation (79) shows that, with an appropriate choice of second class constraints, the Dirac bracket can be used
to yield a gauge fixed system.

The commutation relations amongst the original set of canonical variables, when restricted to the constraint manifold
defined by DA = 0, will necessarily change since the phase space has been reduced. The new commutation relations
which restricted to the constraint manifold will be generated by the Dirac bracket yielding[

zL, zK
]
D

=
[
zL, zK

]
+

[
zL,DA

]
DAB

[
DB , zK

]
(80)

These commutation relations yield the cosymplectic form, JLK (z), as defined by equation (35), of the phase space
which is restricted to the constraint manifold. Since the Dirac bracket satisfies the Jacobi identities, the constraint
manifold will be a symplectic manifold with the inverse of the cosymplectic form, JLK (z), defining the symplectic form,
ω2, restricted to the constraint manifold. Once the gauge has been fixed, the remaining freedom in the system will
correspond precisely to the physical degrees of freedom. For example, when the first class constraint algebra is defined
by N −M independent primary constraints, pc ≈ 0, which each generate a single independent secondary constraint,
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χc ≈ 0, yielding a total of 2(N − M) first class constraints, it will be necessary to impose 2(N − M) independent
second class constraints, yielding 4(N−M) total constraints, in order for the set of all constraints to yield an invertible
constraint matrix. Once a surface in phase space has been constructed from all 4(N −M), the reduced phase space
on which all 4(N −M) constraints are satisfied will have dimensions 2N − 4(N −M) = 4M − 2N ≡ 2D. A theorem
by Darboux, [7], proves that all symplectic manifolds are locally equivalent, therefore the constraint manifold can be
given a local coordinate system at any point which can be written as D canonical pairs, and so the system is said to
have D degrees of freedom.

When working with a field theory rather than a discrete system, the requirement on the commutation relations
amongst the constraints in order for the constraint commutation matrix to be invertible becomes∫

d4x′
{
DAB (x, x′) [DB (x′′) ,DC (x′)]

}
≡

∫
d4x′

{
DAB (x, x′) DBC (x′, x′′)

}
= δA

C δ (x, x′′) (81)

where δ (x, x′) is the Dirac delta function. In general, the constraint commutation matrix for field theories, DAB (x, x′),
will involve differential operators so that the inverse will be an integral operator. In a field theory then, for an invertible
constraint commutation matrix, DAB (x, x′), the Dirac bracket between two arbitrary phase space functions, F and
G, will be

[F (x) , G (x′)]D ≡ [F (x) , G (x′)]−
∫

d4x′′′
∫

d4x′′
(
[F (x) ,DA (x′′)]DAB (x′′, x′′′) [DB (x′′′) , G (x′)]

)
(82)

Just as in the finite dimensional case, the undetermined multipliers of the Hamiltonian HD, defined in equation (77),
satisfy

ΛA (x) =
∫

d4x′
(
DAB (x, x′) [DB (x′) ,H0]

)
(83)

showing that each ΛA (x) will have a coordinate dependence.

F. Synopsis of Gauge Systems in General

Insert standard filler comprised of conclusions that can be drawn from this subsection.

Insert background facts for the development of gauge theories, and outline why gauge fixing is important.

The Dirac bracket and canonical gauge fixing formalism were originally developed through the pioneering works of
Dirac and Bergmann in an effort to quantize gravity, [10],[11].

Insert some conclusions for each subsection here.

III. STABILITY

This section covers the stability of Hamiltonian formulations of gauge theories.

In subsection (III A), pfaffian systems, solution manifolds, and integrability are introduced for general Hamiltonian
formulations with constraints.
In subsection (III B), the vector space V, defined in subsection (II A), is decomposed into gauge invariant subspaces.
In subsection (III C), it is proven that any Hamiltonian formulations in which the gauge has not been fixed will fail
to be integrable. In this subsection, it is also proven that Hamiltonian formulations of gauge theories which are
completely gauge fixed will be integrable.
In subsection (III D), hyperbolicity and well-posedness for Hamiltonian formulations of gauge theories are examined.
In this subsection it is shown that gauge fixed Hamiltonian formulations will be strongly hyperbolic, while Hamiltonian
formulations containing gauge freedom can be at best only weakly hyperbolic. In subsection (III E), a geometrically
motivated method for removing numerical error from Hamiltonian formulations of gauge theories is introduced.
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A. Pfaffian Systems and Integrability

Consider now a general theory defined on some manifold, M, with N variables,
{
zI

}
, and M constraints, CA (z) = 0.

Although the M constraints can be written as CA (z) = 0, at some point z ∈M, the system actually evolves along some
path in the tangent bundle, TM. As a result, it is natural to write the M constraints as M linearly independent one
forms, θA, belonging to the cotangent bundle, θA ∈ T ?M, and to consider the possible solutions for the constrained
system to be the space of evolution vectors, tangent to M, to be the vectors V ∈ TM satisfying

θA (V) = 0 (84)

for all M one forms θA. The M linearly independent one forms θA ∈ T ?M are called Pfaffians, and the vector space
defined by

∆ ≡
{
V ∈ TM | θA (V) = 0 ∀ θA

}
(85)

is called a distribution for smooth vector fields V ∈ TM. The linear independence of the M Pfaffians, θA means that
in an open neighborhood of any z ∈M, the M Pfaffians must satisfy

M∧
A=1

θA ≡ θ1 ∧ · · · ∧ θM 6= 0 (86)

A theory with constraints defined by a collection of Pfaffians is called a Pfaffian system. For a theory with N
independent coordinates,

{
zI

}
, and M constraints, CA = 0, the distribution ∆ and will have N −M dimensions. An

integral manifold, Σ, for a distribution ∆ is defined as a submanifold of M,

i : Σ ↪→M (87)

which is everywhere tangent to the distribution. allowing the integral manifold to be defined as

Σ ≡
{
z′ (z) ∈M | V (i (z′)) = V I∂I z′ (z) = 0 ∀ V ∈ ∆

}
(88)

Since each Pfaffian is independent, an integral manifold Σ can have most N −M dimensions. Since Σ is everywhere
tangent to the distribution, ∆, the pullback of each Pfaffian, θA ∈ T ?M, must satisfy

i?
(
θA

)
= 0 ∀ θA (89)

If the Pfaffian one forms, θA, do not satisfy equation (89), then dual to every i?
(
θA

)
6= 0 ∈ T ?Σ, would be a vector,

V ∈ TΣ, which would not belong to the distribution, ∆, whence Σ can only be an integral manifold if i?θA = 0.
Consider the space of all p-forms over M, written Ωp (M), the space of all exterior forms over M, Ω? (M) =⊕N
k=0 Ωk (M), and the map,

d : Ωp−1 ↪→ Ωp (90)

satisfying dd = d2 = 0, which defines the exterior derivative. Since the M Pfaffians θA ∈ Ω1 (M) must satisfy
equation (89), the wedge product of p Pfaffian one forms must form a basis in Ωp (M) for the space of all p-forms
over M residing in the kernel of the pullback i? : Ωp (M) → Ωp (Σ). In order for the space of all exterior forms in the
kernel of the pullback i? : Ω? (M) → Ω? (Σ) to be preserved under the map d, equation (90), the Pfaffian one forms
must satisfy

dθA = −ωA
B ∧ θB (91)

since, for any map j : N →M, the exterior derivative, d, commutes with the pullback, j? : Ω? (M) → Ω? (N ). The
property that the exterior derivative, d, commutes with the pullback of an differentiable map, j, yielding the relation

j? ◦ d = d ◦ j? (92)

is extremely useful and is a direct consequence of the exterior calculus; it will be true for any exterior derivative,
d, and differentiable map j [1], [7], [12],[3]. If dθA satisfies equation (91), the set of M Pfaffians one forms define a
differential ideal

I ≡
{
θA

}
diff

(93)
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also written as dI ⊂ I. Since the distribution, ∆, equation (85), is defined by the Pfaffian one forms, equation (91)
can also be expressed as

dθA (X,Y) = X
{
θA (Y)

}
−Y

{
θA (X)

}
− θA ([X,Y]) = −θA ([X,Y]) = 0 ∀ X,Y ∈ ∆ (94)

which is a statement about the closure of the distribution under the Lie bracket. Since X,Y ∈ ∆, the Pfaffian one
forms, θA, can only form the basis for a differential ideal if the distribution, ∆, is a closed vector space, meaning that
the Lie bracket of any two vectors X,Y ∈ ∆ must satisfy

[X,Y] ≡ Z ∈ ∆ (95)

Because the distribution, ∆, was defined for smooth vector fields only, the Lie bracket is well defined for all vectors
X,Y ∈ ∆. When equation (95) is satisfied, the distribution is said to be in involution, a property often expressed as
[∆,∆] ⊂ ∆.

A Pfaffian system is integrable whenever there exists an N −M dimensional integral manifold, Σ, called a maximal
integral manifold, defined in M by M coordinates CA = 0. Pfaffian systems which are not integrable are called
nonintegrable systems. From equation (??), all M Pfaffian one forms, θA, must be vanishing closed forms when pulled
back to the integral manifold, Σ, which, from equation (89), allows each Pfaffian one form, θA, to be expressed as a
locally exact one form

i?
(
θA

)
= i?

(
dCA

)
= d i?

(
CA

)
= 0 (96)

whenever the distribution, ∆, is in involution. Integrating equation (96), the M constraints CA must be constant in
M, since each belongs to the kernel of the pre-image, i−1 : M→ Σ, a consequence equations (88) and (96). Whence
a Pfaffian system will be integrable whenever the distribution, ∆, is in involution, or equivalently, whenever the M
linearly independent Pfaffians form a basis for the differential ideal, I; a result originally proven by Frobenius [1],[13].

As a consequence of equations (96), if the M Pfaffians, θA, do not form a differential ideal, I, the M constraints,
CA = 0 ∈ Ω0 (M), can not define an N − M dimensional maximal integral manifold, Σ, in M. This is a direct
result of equation (91), since if the M Pfaffians, i?

(
θA

)
∈ T ?Σ, do not form a differential ideal, θA will not be locally

closed and therefore can not yield a set of M vanishing exact one forms in T ?Σ. This means that for non-integrable
systems, there can be no guarantee that the constraints CA (z) = 0, expressed as functions on M, will be preserved,
even locally, as the system evolves.

B. Gauge Invariant Vector Spaces

In order to facilitate the examination of the integrability of Hamiltonian formulations of gauge theories provided in
subsection (III C), it will be useful to derive certain gauge invariant vector spaces as subspaces of the tangent bundle,
V, and cotangent bundle, V?, of the phase space in which the Hamiltonian formulation is defined. Throughout
this section, a gauge invariant vector space will be used to describe a vector space which is preserved under gauge
transformations. This does not mean that elements of the vector space will be preserved under gauge transformations,
only that any gauge transformation will define a bijective map from the vector space to itself. Determining the gauge
invariant vector subspaces of the tangent bundle, V ≡ TM, defined for a canonical 2N dimensional phase space, M,
will motivate the need to introduce second class constraints, thereby fixing the gauge, allow gauge transformations
in phase space to be projected onto transformations in each gauge invariant subspace, and allow general phase
space transformations to be expressed as the sum of a gauge transformation and a transformation which can not
be expressed as a gauge transformation, corresponding to constraint violations. In subsection (III E), a numerical
method for projecting out constraint violating transformations will be introduced.

As shown in subsection (II D), Hamiltonian formulations of gauge theories generate a set of first class constraints,
CA ≈ 0, which vanish on the constraint surface and commute weakly with one another as well as with the canonical
Hamiltonian, H. As a result, there will be a Hamiltonian vector, subsection (II A), associated with each first class
constraint, CA, given by

CB ≡ CI
B∂I ≡ δBAJKI ∂KCA ∂I (97)

so that

dCA ≡ dCA

dzL
dzL ≡ δABω2 (CB , ·) = δABCI

B JIK dzK (98)
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The Hamiltonian vectors generated by first class constraints, CA, will be referred to as first class Hamiltonian vectors.
For notational convenience, the vectors CB have be expressed with the constraint index, B, lowered. Since the set of
first class constraints is assumed to be irreducible, the first class Hamiltonian vectors must be linearly independent.
In addition to being linearly independent, each first class Hamiltonian vector, CB , must be tangent to the constraint
manifold since

CB (CA) ≡ CK
B ∂KCA = [CB , CA] ≈ 0 (99)

Using equations (61) and (97), the Lie bracket of any two first class Hamiltonian vectors, CB and CA, will be

[CA,CB ] ≡ CA (CB)−CB (CA) (100)

=
(
CK

A ∂KCL
B − CK

B ∂KCL
A

)
∂L

= −JJL∂J

(
ΓC

ABCC

)
∂L ≈ 0

showing that the first class Hamiltonian vectors commute on the constraint manifold. There should be no confusion
between the Lie bracket, which acts on vectors, and the Poisson bracket, which acts on functions.

Since the first class Hamiltonian vectors are all independent and the Lie bracket of any two first class Hamiltonian
vectors vanishes on the constraint manifold, the first class Hamiltonian vectors form a basis on the constraint manifold
for a vector space which is a subspace of all vectors tangent to the constraint manifold and which is invariant under
all gauge transformations. For a gauge theory with 2(N − M) first class constraints,

{
CA

}
, embedded into a 2N

dimensional phase space, M, define the vector space over the basis of 2(N −M) independent first class Hamiltonian
vectors, {CA}, to be

VG ≡
{
X = XACA | XA ∈M

}
(101)

The vector space VG, restricted to the constraint manifold is a closed subspace tangent to the constraint manifold,
and so must be invariant under gauge transformations because the constraint manifold itself is gauge invariant. In
addition to VG it is useful to define the dual vector space

V?
G ≡

{
Ỹ = YAW̃A | YA ∈M

}
(102)

over the basis, W̃B , satisfying

W̃B (CA) = δB
A (103)

The one forms, W̃B , defined in equation (103) will be referred to as first class Hamiltonian one forms. Since V?
G is

dual to VG, when restricted to the constraint manifold V?
G must also be invariant under all gauge transformations.

Using equation (97), the components of W̃B ∈ V? must satisfy

W̃B (CA) ≡ WB
K CL

A dzK (∂L) = WB
K CK

A = δB
A (104)

Although the symplectic form, ω(2), maps the first class Hamiltonian vectors, CA ∈ V, to exact one forms in V?
G,

equation (97), there is in general no canonical way to express the first class Hamiltonian one forms W̃B ∈ V?, as
exact one forms in V?. Expressing the first class Hamiltonian one forms uniquely as exact one forms would require
unique phase space functions, wB , satisfying

[
wB , CA

]
= δAB so that W̄B = dwB . Since the first class constraints

are constant on the constraint manifold, the phase space functions, wB , must also be constant, and therefore would
function as second class constraints. Although there is no canonical way to express the first class Hamiltonian one
forms as exact forms in phase space, 2(N −M) independent one forms satisfying equation (103) will always exist.

In addition to the vector space VG and dual V?
G, it will be useful to define the vector space, V⊥ ⊂ V, which is the

space of all vectors X ∈ V orthogonal to the constraint manifold. Using the expression for the components of the first
class Hamiltonian one forms, equation (104), along with the canonical symplectic form on M, the space of vectors
orthogonal to the first class constraint manifold, V⊥, will be defined over the basis vectors

YB ≡ WB
K JKL∂L (105)

so that

V⊥ ≡
{
W = WAYA | WA ∈M

}
(106)
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Using the definition of the first class Hamiltonian one forms, equation (103), and first class Hamiltonian vectors,
equation (97), each YB must satisfy

YA
(
CB

)
≡ WA

K JKL ∂LCB = δAB (107)

for one, and only one, first class constraint, so will be referred to as first class orthogonal vectors. The orthogonal
vector space V⊥ will have a dual space

V?
⊥ ≡

{
X = XAZ̃B | XA ∈M

}
(108)

defined over the basis one forms, Z̃B satisfying

Z̃B

(
YA

)
= δA

B (109)

Using equation (107), the basis one forms Z̃B can be expressed as exact one forms

Z̃B ≡ δAB dCA (110)

The one forms Z̃B are dual to the first class orthogonal vectors and so will be called first class orthogonal one forms.
From equation (110), all first class orthogonal one forms must vanish as the system evolves in order for the evolution
to remain on the first class constraint manifold, defined by the vanishing of the first class constraints. Since there
is no canonical expression for the components of the first class Hamiltonian one forms, there can be no canonical
expression for the components of the basis vectors for V⊥. Since the first class constraint manifold, defined by the
vanishing of the first class constraints, CA ≈ 0, is gauge invariant, the vector space V⊥ and dual vector space V?

⊥ must
also be gauge invariant.

As a result of equation (107), the vector spaces V⊥ ⊂ V and VG ⊂ V must be disjoint gauge invariant proper
subspaces of V. Since the physical content of any gauge theory must reside on the constraint manifold, be invariant
under gauge transformations, and must evolve without violating any of the first class constraints, the space of vectors
tangent to the physical observables must also form a vector subspace, VP ⊂ V, which is orthogonal to both VG and
V⊥. Define the space of vectors tangent to the physical observables, VP so that V decomposes as

V = VP ⊕ VG ⊕ V⊥ (111)

Since V is the sum of disjoint vector subspaces which are invariant under gauge transformations, each vector subspace
will be tangent to a subspace of M which will be mapped to itself under gauge transformations. As a result, the
canonical phase space M is also decomposable into a direct sum of disjoint subspaces

M = MP ⊕MG ⊕M⊥ (112)

which are invariant under gauge transformations. Since the tangent space to each subspace of M is gauge invariant,
the dimensions of each the subspaces MP ,MG, and M⊥ must be equal to the dimension of the tangent subspaces
VP ,VG, and V⊥ respectively. Counting the independent basis vectors for each vector subspace yields

dim (MG) = dim (M⊥) = 2(N −M) (113)
dim (MP ) = dim (M)− 4(N −M) = 2N − 4(N −M) = 2D

which is in agreement with subsection (II E) where it was shown that any gauge theory with 2(N − M) first class
constraints will have 2N − 4(N −M) = 2D gauge invariant physical variables corresponding to D degrees of freedom.

C. Integrability of Gauge Theories

Consider the Hamiltonian formulation of a gauge theory with D degrees of physical freedom expressed in a 2N
dimensional phase space, M, with coordinates,

{
zI

}
. As shown is subsection (II C), the canonical Hamiltonian

formulation of a gauge theory with D degrees of freedom will have 2(N − M) first class constraints, CA ≈ 0, and
2(N −M) undetermined multipliers corresponding to the available gauge freedom. In order to show integrability for
this system, as defined in subsection (III A), it is necessary to show that there exists a map from the 2N .dimensional
phase space M, with coordinates

{
zI

}
, to a 2N dimensional phase, M̄, with canonical coordinates defined by

2(N −M) canonical pairs
(
ḡA, C̄A

)
and D canonical pairs (q̄a, p̄a), in which the 2(N −M) canonical momenta C̄A,
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corresponding to the first class constraints, are constant, so that dC̄A = 0 as the system evolves, ensuring that the
system remains on the first class constraint manifold. Following the decomposition of the canonical phase space defined
in subsection (III B), the 2N dimensional canonical phase space, M̄, with canonical coordinates

{
q̄a, p̄b, ḡA, C̄B

}
,

decomposes into M̄ = M̄P ⊕ M̄G ⊕ M̄⊥ with coordinates

(q̄a, p̄b) ∈ M̄P (114)(
C̄A

)
∈ M̄G (115)

(ḡB) ∈ M̄⊥ (116)

Using this decomposition, the tangent bundle, V̄ ≡ TM̄, also decomposes, V̄ = V̄P ⊕ V̄G ⊕ V̄⊥. Using the canonical
basis for V̄ defined by {∂q̄a , ∂p̄b

, ∂C̄A , ∂ḡB
} the vector subspaces can be expressed as

V̄P ≡
{
P̄ = P a∂q̄a + P b∂p̄b

∈ V̄ | P̄ (z̄) = 0 ∀ z̄ ∈ M̄P

}
(117)

V̄G ≡
{
C̄ = CA∂ḡA

∈ V̄ | C̄ (z̄) = 0 ∀ z̄ ∈ M̄G

}
(118)

V̄⊥ ≡
{
Ȳ = Y B∂C̄B ∈ V̄ | Ȳ (z̄) = 0 ∀ z̄ ∈ M̄⊥

}
(119)

Note that these definitions do not require that the vector subspaces defined above be closed, meaning that the Lie
bracket of any two vector fields in a given subspace can yield a vector field which does not belong to the subspace.

In order to examine the integrability of the Hamiltonian formulation of a gauge theory, it is necessary to express
all constraints as Pfaffian one forms. Begin by using each independent first class constraint, CA ≈ 0, to define a one
form

θA ≡ dC̄A − ∂KCA dzK (120)

which is an element of the cotangent bundle over the product space M×M̄. From subsection (III B), the 2(N −M)
one forms defined by equation (120), each satisfy

θA (CB) ≈ 0 (121)

for all first class Hamiltonian vectors, CA, as defined in equation (97). As a result of the independence of the first
class constraints, the 2(N −M) one forms defined in equation (120) will be linearly independent, thereby satisfying
equation (86). Since the first class Hamiltonian vectors, CA, are all independent and all tangent to the constraint
manifold, CB

(
CA

)
≈ 0, equation (99), the 2(N − M) one forms, θA, will define a distribution, ∆, which includes

all vectors tangent to the constraint manifold. Since the distribution defined by the Pfaffian one forms θA includes
all vectors tangent to the constraint manifold, thereby including all infinitesimal gauge transformations, and since
the Pfaffian one forms θA are linearly independent on the constraint manifold, the Pfaffian system for the canonical
Hamiltonian formulation will be defined by the 2(N −M) independent one forms θA given by equation (120).

The canonical Pfaffian system generated by the 2(N −M) independent first class constraints yields a distribution
in V defined as

∆c ≡
{
V ∈ V | θA (V) ≈ 0 ∀ θA

}
(122)

From equation (120), the distribution ∆c will include all vectors in V which are tangent to the constraint manifold,
and so must include the gauge invariant vector spaces, VP and VG, defined in subsection (III B), In addition to the
space of vectors tangent to the constraint manifold, the distribution ∆c must include all first class orthogonal vectors,
YD, defined by equation (105), with coefficients which vanish on the constraint manifold. As a result, the distribution,
∆c, will be given by

∆c = VP ⊕ VG ⊕ V0
⊥ (123)

with

V0
⊥ ≡

{
W = WAYA ∈ V⊥ | WA = 0

}
(124)

which is the space of all vectors tangent to the first class orthogonal vectors, YA, having vanishing coefficients. This
vector space can be defined throughout phase space since any vector with vanishing coefficients will belong to the
distribution, and so for a given constraint manifold defines a vector field which extends off of the constraint manifold.
Although V⊥ is a gauge invariant vector space, it can not be expected that V0

⊥ will be gauge invariant since the
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vanishing coefficients, WA = 0, may have a complicated dependence on the gauge freedom. The canonical Pfaffian
system defined by the 2(N −M) one forms of equation (120) defines a similar distribution in V̄.

In subsection (III A) it was shown that a Pfaffian system will only be integrable if the distribution, ∆, generated by
the Pfaffian one forms is in involution, [∆,∆] ⊂ ∆. Using equation (123), the Pfaffian system defined for a canonical
Hamiltonian formulation yields the following theorem

Theorem III.1: Hamiltonian systems with gauge freedom can not be integrable.

In order to prove theorem III.1, it is sufficient to show that any Pfaffian system which contains a Pfaffian one form,
θA, generated by any first class constraint, CA ≈ 0, will result in a distribution, ∆g, which can not be in involution.

Proof. For any independent Pfaffian, θA, corresponding to a first class constraint, CA, through equation (120), define
vector fields X ≡ CA and Y ≡ WAYA ∈ V0

⊥ such that[
CA,WA

]
6= 0 (125)

in some open region of phase space. The vectors X and Y both satisfy, θA (X) = θA (Y) = 0, on the constraint
manifold, and so X,Y ∈ ∆c. Using the definitions for the first class Hamiltonian vectors, equations (97), and first
class orthogonal vectors, equation (105), the Lie bracket of the vector fields X and Y generates a vector field defined
by

Z ≡ [X,Y] ≈ CL
A WA

K ∂L (sA) JKI∂I =
[
CA,WA

]
YA (126)

Using the property that first class orthogonal vectors are orthogonal to the constraint manifold, equation (107), along
with equation (125), the Pfaffian one form, θA, equation (120), and vector field Z, equation (126), will satisfy

θA (Z) 6= 0 (127)

everywhere in some open region of phase space. As a result, Z 6∈∆c, showing that the distribution, ∆c, can not be in
involution, [∆c,∆c] 6⊂∆c, anywhere in this open region of phase space. Whence the Pfaffian system is nonintegrable.
Since this has been shown for any choice of first class constraint, CA, it will be true for all first class constraints,
proving that any Hamiltonian formulation with gauge freedom can not be integrable.

As shown is subsection (II E), Hamiltonian formulations of gauge theories with 2(N − M) first class constraints,
corresponding to the generators of gauge transformations, can be gauge fixed by the introduction of 2(N − M)
constraints which yield an invertible matrix of commutation relations with the 2(N −M) first class constraints. As a
result, once the gauge has been completely fixed the 2(N −M) original first class constraints are converted to second
class constraints, yielding a total of 4(N − M) second class constraints given by the 4(N − M) independent phase
space functions CA = SB = 0 which satisfy the 2(N −M) equations

[
CA,SA

]
6= 0 everywhere in some neighborhood

of the original first class constraint manifold. The remaining independent components of the original 2N dimensional
canonical phase space are given by the 4M − 2N ≡ 2D physical observables which, at each point on the constraint
manifold., locally form a symplectic manifold with D degrees of physical freedom. As a consequence, theorem III.1
has the following corollary

Corollary III.2: Hamiltonian formulations of gauge theories with all gauge freedom uniquely fixed through the Dirac
bracket will be integrable.

Proof. Using the 4(N −M) second class constraints, CA = SB = 0, define 4(N −M) Pfaffian one forms

θA ≡ dCA (128)
θB ≡ dSB

From equation (123), the distribution generated by this Pfaffian system must be VP , the vector space tangent to the
space of physical observables. Since the 4(N −M) Pfaffians are exact, equation (128), they must form the basis for a
differential ideal, I. Therefore the manifold defined by the 2D physical observables will form a 2N − 4(N −M) = 2D
dimensional integral manifold, ΣP , which is of maximal rank. Whence, Hamiltonian formulations of gauge theories
in which all gauge freedom has been uniquely fixed through the Dirac bracket will be integrable.

It is important to note that theorem (III.2), along with the corollary (III.2), were proven without reference to a
particular set of constraints, only the existence of first class constraints when gauge freedom is present and the ability
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to define phase space functions which uniquely fix the gauge freedom, and thereby fail to commute with the first class
constraints.

Once the gauge has been fixed, a unique invertible map from M to M̄ can be locally defined everywhere in some
neighborhood of the constraint manifold. As a result, elements of V can be decomposed into contributions from the
subspaces VP ,VG and V⊥, which are defined in terms of a given constraint manifold. A particularly useful consequence
of this is the ability to construct a path in phase space between any two solutions residing in the same open region on
which the Dirac bracket is invertible, thus allowing any phase space variation violating the constraints to be identified
uniquely and removed. This feature will be explored further in subsection (III E). Without fixing the gauge, there
would be no way to uniquely specify a map defining the phase space components q̄a, p̄b, ḡB ∈ M̄ as functions of the
phase space coordinates zI ∈ M and therefore no way to restrict the evolution to the first class constraint manifold.
If it were possible to completely restrict the evolution to the constraint manifold, any Hamiltonian formulation, with
or without gauge freedom, would be integrable, but manifestly restricting to the constraint manifold would require
the first class constraints to strongly vanish, in contradiction with the definition of the first class constraints.

D. Hyperbolicity

This subsection assumes that the reader is familiar with the notions of hyperbolicity and well-posedness for
differential systems, topics which are thoroughly covered elsewhere [14]. Additionally, in sections (IV) and (??), the
reader will be assumed to be familiar with basic pseudo-differential methods which are necessary to define hyperbolicity
and well-posedness for second order partial differential systems [15],[16]. Throughout these notes, only hyperbolic
gauge theories will be considered.

Suppose a complete set of time independent second class constraints have been imposed, uniquely fixing all gauge
freedom. The resulting gauge fixed extended Hamiltonian will generate the following equations of motion

ż = [z,H] +
[
z, λACA

]
+

[
z, γBSB

]
(129)

where CA,SB denote the set of first class and second class constraints respectively and λA, γB denote their Lagrange
multipliers. As shown in subsection (II E), all 4(N −M) Lagrange multipliers are defined as phase space functions
through the Dirac bracket, manifestly satisfying

dCA

dt
= [CA,HE ] = [CA,H]D = 0 (130)

dSB

dt
=

[
SB ,HE

]
=

[
SB ,H

]
D

= 0

Since the gauge fixed extended Hamiltonian, HE , preserves all 4(N − M) constraints, the Hamiltonian vector field
generated by HE must simultaneously satisfy all 4(N−M) independent Pfaffian one forms generated by the constraints,
subsection (III C), and therefore must be an element of the distribution, ∆. Using the results of subsection (III C),
because the gauge has been fixed through the introduction of a complete set of second class constraints, any vector
belonging to the distribution, V ∈ ∆, must have vanishing coefficients for all components tangent to any first class
Hamiltonian vector, CA, or any first class orthogonal vector, YB . As a result, given a solution z (t0) at time t0
simultaneously satisfying all first class constraints and imposed second class constraints, along the phase space flow
generated by the gauge fixed extended Hamiltonian, equation (129), the 2(N −M) variational vectors

δAz ≡ [z, CA] ≡ δABCB (z) (131)

CA ∈ VG

generated by the original first class constraints as well as the 2(N −M) variational vectors

δBz ≡
[
z,SB

]
≡ SB (z) (132)

SB ∈ V⊥

generated by the imposed second class constraints must be each be preserved. The invertibility of the Dirac bracket
ensures that these variational vectors are preserved since each of the 4(N − M) constraints must simultaneously
commute with the gauge fixed extended Hamiltonian and vanish strongly, CA = SB = 0, throughout some open
neighborhood of the initial constraint manifold. Since the 4(N −M) variational vectors of equations (131) and (132)
are generated by 4(N−M) independent tangent vectors, forming a basis for the vector subspace VG⊕V⊥ ⊂ V, on any
given second class constraint manifold all variations tangent to any of the 4(N −M) variational vectors must vanish
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otherwise, as the system evolves, some of the 4(N−M) constraints defining the second class constraint manifold would
be violated. The evolution equations generated by the gauge fixed extended Hamiltonian, which keep all 4(N −M)
constraints constant, therefore ensure that no variations tangent to those of equations (131) or (132) enter the system.

Since the 4(N − M) independent variational vectors are preserved under the flow generated by the gauge fixed
extended Hamiltonian, each variational vector must correspond to an independent eigenvector for the system of
evolution equations generated by the gauge fixed extended Hamiltonian. Because all 4(N −M) constraints strongly
commute with the gauge fixed extended Hamiltonian, the phase space flow generated by HE will remain on the initial
second class constraint manifold. Since each of the 4(N − M) preserved variational vectors must have vanishing
coefficients on the initial second class constrain manifold, each of the corresponding eigenvectors must each yield a
zero eigenvalue. This should be an anticipated result since each of the 4(N − M) constraints defines a constant of
motion, corresponding to a value in phase space which propagates with zero speed. By assumption the Hamiltonian
formulation is hyperbolic, therefore the remaining 2N − 4(N −M) = 2D independent eigenvectors will be given by
the 2D complex variational vectors

δz±a ≡ ∂tz±a ≡
[
z±a ,HE

]
(133)

with z±a ≡ qa ± ipa for a = 1, . . . , D corresponding to the D canonical conjugate pairs (qa, pa). The explicit form of
the D canonical conjugate pairs can be found using the Dirac bracket, as described in subsection (II E). Although
the exact expression for the D canonical conjugate pairs, found using the Dirac bracket, will be dependent upon
the choice of second class constraints used to fix the gauge, the D physical degrees of freedom are themselves gauge
independent. Therefore, if equation (133) yields D real pairs of eigenvalues for any choice of second class constraints,
which when imposed uniquely fix the gauge, it must yield D real pairs of eigenvalues for any choice, independent of
how the gauge is fixed. This means that the hyperbolicity of any Hamiltonian formulation will be independent of
the gauge freedom present. Using this result, equations (131) and (132) provide 4(N −M) eigenvectors each having
eigenvalue equal to zero, and equation (133) provides the remaining 2D eigenvectors each having the real pair of
non-zero eigenvalues ±ωa ∈ R, |ωa| > 0. Whence gauge fixed Hamiltonian formulations will posses a complete set of
independent eigenvectors resulting in a strongly hyperbolic, and therefore well-posed, system.

Since an independent second class constraint must be imposed for each independent first class constraint in order
to completely fix the gauge, any Hamiltonian formulation in which the gauge is not fixed will not have a full set of
conserved second class constraints necessary to generate a full set of conserved variational vectors, equation (132).
Because of this, any Hamiltonian formulation containing gauge freedom will generate a system of evolution equations
which can not posses a complete set of eigenvectors. Whence, Hamiltonian formulations containing gauge freedom
can form only weakly hyperbolic systems at best.

E. Removing Numerical Error

The role of the extended Hamiltonian is to fix the gauge completely, yet it is inevitable that error will be introduced
in any numerical simulation. When this occurs, finite numerical error will map the system on to an alternate extremal
path within some neighborhood of the original solution. The difference in solutions will correspond to a different
neighboring gauge choice, which violates the analytic values of second class constraints, or a different neighboring
set of solutions for the first class constraints. In either case, the result will be that any error introduced into the
system will alter the Lagrange multipliers of the constraints which are found in the gauge fixed extended Hamiltonian.
Generically, the Lagrange multipliers in the extended Hamiltonian of the first class constraints will depend on some
combination of the time derivatives of the second class constraints projected onto the first class constraint manifold,
while the Lagrange multipliers of the second class constraints will involve time derivatives of the first class constraints.
This suggests that numerical errors which enter into a gauge fixed system can be projected onto small corrections to
the Lagrange multiplier terms which should otherwise vanish identically along the flow generated by the gauge fixed
extended Hamiltonian. The form of equation (169), along with the intended role of the extended Hamiltonian as a
method to fix the gauge completely, indicates that to first order about a particular solution the corrections to the
Lagrange multipliers in the extended Hamiltonian will be

ε
(1)
Γ (x) =

∫
d3x′

{
DΓΦ (x, x′)

[
CΦ (x′) ,HE

] }
(134)

As mentioned in subsection (III C), once the gauge is fixed, there will exist a canonical method for projecting out
all constraint violations. The canonical method is provided by the additional terms generated by equation (134),
which have the exact form of the original Lagrange multipliers. Comparing equation (134) to the form of the gauge
fixed Lagrange multipliers, equation (78), reveals that the modified Lagrange multiplier terms, calculated using the
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extended Hamiltonian rather than the canonical Hamiltonian, serve to alter the phase space path generated by the
gauge fixed Hamiltonian by a phase space variation returning the flow to the original constraint manifold. Augmenting
the gauge fixed extended Hamiltonian by the terms of equation (134) will generate evolution equations for the field
variables in which the constraint violations are corrected up to first order in the error. Second order corrections to
the error involve variations in the Dirac bracket itself, yielding the terms

ε
(2)
Γ (x) =

∫
d3x′

{
DΓΦ (x, x′)

[[
CΦ,HE

]
,HE

]
+

1
2
DΓΣDΦΘ

[[
CΣ, CΘ

]
,HE

] [
CΦ,HE

] }
(135)

Using the extended gauge fixed Hamiltonian, all order corrections about the current solution can be generated, yielding
the total correction term

εΓ ≡
inf∑

n=1

ε
(n)
Γ (136)

Using these results, the modified gauge fixed extended Hamiltonian takes the form

HN = HE − εΓCΓ (137)

= H0 + (λΓ − εΓ) CΓ

These terms will always vanish identically except in the presence of numerical error. For all gauge theories considered
here, the multipliers of second class constraints will depend on linear combinations of the evolution of the first class
constraints as generated by the canonical Hamiltonian. This means that all multipliers of second class constraints
must vanish weakly on the first class constraint manifold. The canonical method presented here, applicable to all
gauge theories, is a generalization motivated by the methods originally implemented for General Relativity by Brown
and Lowe [17].

F. Synopsis of Stability

Hamiltonian formulations of gauge theories in which the gauge is not fixed can not yield integrable systems precisely
because the theory has been embedded in a canonical phase space. If it were possible to restrict to the first class
constraint manifold, the system would become integrable, but this would require that all first class constraints
strongly vanish. By introducing a set of second class constraints, uniquely fixing the gauge and thereby allowing the
Dirac bracket to be constructed, all first class constraints are converted to second class constraints, which strongly
vanish. Once the theory is restricted to a constraint manifold defined by a set of strongly vanishing constraints, the
theory will be come integrable.

Restricting to an integrable system will always yield a strongly hyperbolic formulation.

Introducing second class constraints provides a canonical method to project out numerical error.

Subtleties dealing with weakly vanishing canonical Hamiltonians will be discussed in section (??).

Introducing BRST variables into the Hamiltonian formulations of gauge theories yields an integrable, strongly
hyperbolic formulation accounting for violations of the first class constraint. This will be the subject of future work.

IV. HAMILTONIAN FORMULATION OF ELECTRODYNAMICS

In this section, Electrodynamics is presented as an example gauge theory, and the abstract concepts of section (II)
are implemented an discussed. Though Electrodynamics is a particular simple gauge theory, because the gauge group
is abelian and therefore yields a set of commuting first class constnaints, it provides a simple setting for concretely
implementing the abstract concepts of section (II). Additionally, Electrodynamics allows for many features present in
other gauge systems to be explored in a simple familiar setting.
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A. Action and Canonical Evolution

The Maxwell action in vacuum is

S =
∫

vol4
[
AαJα − 1

4
FαβFαβ

]
≡

∫
dt

∫
dx3 L (138)

where the one form Aαdxα is the electromagnetic potential and the field strength 2 form, F(2) ≡ Fαβdxα ∧ dxβ , is
defined by

Fαβ ≡ dA(1) ≡ Aβ;α −Aα;β = Aβ;α dxα ∧ dxβ (139)

The coefficient of the volume element has been absorbed into the definition of L in the action, equation (138). The
electric and magnetic fields take their values from the field strength 2 form, F(2), and are defined by

Eidxi = −F0idxi = Fi0 dxi ↔ Ej = F 0i (140)

Bijdxi ∧ dxj = Fij dxi ∧ dxj ↔ Bi = ?F 0i

Here ? is the Hodge operator mapping p forms to their Hodge dual which is dependent on the metric of the base
manifold. Differential forms which are restricted to the spatial manifold, such as the spatial one form E(1) and spatial
two form B(2) defined above, will be denoted in script throughout this section. It will also be useful at this point to
introduce the codifferential operator defined by

d∗A(p) ≡ ?d ? A(p) (141)

which sends p forms to (p− 1) forms.
It is common to separate the temporal and spatial components of the electromagnetic potential to simplify the

notation when explicitly dealing with a spacetime split, as is necessary in the Hamiltonian formulation. The standard
definitions found in any textbook which deals with the electromagnetic potential are

A0 dt ≡ φ dt (142)

Ai dxi ≡ A(1)

The temporal term is commonly referred to as the scalar potential, φ, while the spatial vector, ~A, which is the
contravariant version of the covariant A(1), is commonly known as the vector potential. Again, as noted above, any
form denoted in script, e.g. E(1),A(1),B(2), will correspond to a form defined on the spatial manifold. The exterior
derivative restricted to the spatial slice will be denoted in bold, d, along with the spatial codifferential operator,
d∗ ≡ ∗Sd∗S , where ∗S denotes the Hodge operator on the spatial slice. Using these definitions, Maxwell’s equations
can be written in terms of the physically familiar electric and magnetic fields

E(1) = ∂0A(1) − dφ ↔ ~E = ∂0
~A− ~∇φ (143)

B(2) = dA(1) ↔ ~B = ~∇× ~A

The field strength 2 form, F(2), and its dual, ?F(2), which reside on the 4 manifold become

F(2) = E(1) ∧ dt + B(2) (144)

?F(2) = H(1) ∧ dt−D(2)

When the 4 manifold is Minkowski, the p forms H(1) and D(2) are related to the p forms E(1) and B(2) through

∗SE(1) ≡ D(2) (145)

∗SB(2) ≡ H(1)

Whenever the manifold is not Minkowski these relation will be considerably more complicated. In order to avoid
this complication, the Minkowski metric will be used throughout this section. Additionally, the spatial manifold will
assumed to be closed so that any boundary terms arising from integrating by parts will identically vanish.

In the Hamiltonian formulation, the 4 elements of the electromagnetic potential, (φ,Ai), define the configuration
space. The momenta conjugate to vector potential are

πi ≡ δ L
δ (∂0Ai)

= F i0 ≡ Ei (146)
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Because F(2) is anti-symmetric, equation (139), the momenta conjugate to the scalar potental, φ = A0, must vanish,
yielding the primary constraint

π0 ≈ 0 (147)

The canonically conjugate pairs are
(
Ai, π

i
)

and
(
φ, π0

)
, and the canonical Hamiltonian in vacuum is

H0 ≡
∫

d3x H0 (148)

=
∫

d3x

{
1
2
πiπi +

1
4
F ijFij − φ;jπ

j

}
=

∫
d3x

{
1
2
~π · ~π +

1
2

(
~∇× ~A

)
·
(

~∇× ~A
)
− ~∇φ · ~π

}
=

∫
d3x

{
1
2
~π · ~π − ~∇φ · ~π

}
+

1
2

∫ {
dA(1) ∧ ∗SdA(1)

}
The time derivative of the primary first class constraint, π0 ≈ 0, generates the secondary constraint

π̇0 ≡
[
π0,H0

]
= −πj

;j ≈ 0 (149)

This constraint locally commutes with the canonical Hamiltonian, generating no further consistency constraints.
When charge is present, the secondary constraint of equation (149) corresponds to the familiar Gauss’s law

~∇ · ~E = ρ (150)

Since secondary constraint ~∇ · ~π ≈ 0 commutes with both the canonical Hamiltonian and primary constrant π0 ≈ 0,
the first class constraint algebra for electrodynamics is given by the two strongly commuting first class constraints

π0 ≈ 0 (151)

πi
;i ≈ 0

The canonical Hamiltonian generates the evolution equations

Ȧi = [Ai,H0] = πi − φ,i (152)

for the vector potential and

~̇π = [~π,H0] = −~∇× ~∇× ~A (153)

for the canonically conjugate momenta. Expressing the canonical momenta ~π as a spatial one form

π̃(1) ≡ πi dxi (154)

the canonical equations of motion become

˙A(1) =
[
A(1),H0

]
= π̃(1) − dφ (155)

˙̃π(1) =
[
π̃(1),H0

]
= −∆A(1)

where ∆ denotes the spatial Laplacian, defined as

∆ ≡ (dd∗ + d∗d) (156)

There is no canonical evolution equation for the scalar potential, φ. From equation (149), the canonical evolution
equation for the primary first class constraint π0 ≈ 0 will vanish when the evolution remains on the constraint
manifold.
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B. Second Class Constraints and the Dirac Bracket

In order to construct a Dirac bracket and fix the gauge, it is necessary to enlarge the constraint algebra,
equation (151), by introducing second class constraints. From section (II), the introduction of second class constraints
will enable a coordinate system to be constructed in phase space throughout some neighborhood of the initial
solution, allow a non-degenerate symplectic form, the Dirac bracket, residing on the space of physical observables
to be constructed, and ensure that the Hamiltonian formulation be well-posed.

In the Lagrangian form of Electrodynamics a popular constraint to impose is the Lorentz gauge choice

d∗A(1) = Aα
;α = 0 (157)

Given that the field strength 2 form, F(2), is defined by dA(1), so it seems natural to impose a constraint involving
the codifferential operator. Since the Hamiltonian formulation must inherently split space and time, generating time
evolution for field variables defined on a spatial slice at constant time, it will be slightly simpler to impose the Coulomb
gauge choice in vacuum

φ = 0 (158)

d∗A(1) = ~∇ · ~A = 0

The non-vanishing commutation relations of the Coulomb gauge choice with the first class constraints are[
φ, π0

]
= 1 (159)[

~∇ · ~A (x), ~∇ · ~π (x′)
]

= −∇2δ (x,x′) = ∆δ (x,x′)

with δ (x,x′) denoting the Dirac delta function in three dimensions. The commutation relations of equation (159) are
invertible throughout phase space, therefore imposing the Coulomb gauge, equation (158), as a set of second class
constraints will completely fix the gauge.

With the introduction of second class constraints the constraint algebra generated by the first class constraints has
been expanded from two first class constraints, equation (151), to four second class constraints

π0 = φ = 0 (160)
~∇ · ~π = ~∇ · ~A = 0

satisfying the commutation relations derived in equation (159). The expanded constraint algebra defines the second
class constraint manifold, which is a sub-manifold of the original first class constraint manifold. Denoting the collection
of first and second class constraints as

CΓ ≡
{

π0, ~∇ · ~π, φ, ~∇ · ~A
}

(161)

the constraint commutation matrix can be expressed as

[CΓ (x), CΨ (x′)] ≡



0 0 −1 0

0 0 0 ∇2

1 0 0 0

0 −∇2 0 0


δ (x,x′) (162)

Since the constraints φ = π0 = 0 form a canonical conjugate pair in phase space,
(
φ, π0

)
, the phase space can be

reduced by setting φ = π0 = 0 in the canonical action and dropping the phase space coordinates φ and π0 from
consideration. This reduces the Poisson bracket to the phase space defined by the canonical pairs

(
Ai, π

i
)
. After

reducing the phase space, the set of all constraints, equation (161), reduces to

CA =
{

~∇ · ~π, ~∇ · ~A
}

(163)
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With this simplification, the constraint commutation matrix of equation (162) reduces to the 2× 2 matrix

[CA (x) , CB (x′)] ≡

 0 ∇2

−∇2 0

 δ (x,x′) (164)

The inverse operator of this constraint commutation matrix, satisfying equation (81), is

DAB (x′′,x′) ≡ δ (x′′,x′)

 0 −1
∇2

1
∇2 0

 (165)

The Dirac bracket then takes the form of equation (82) evaluated on the reduced set of canonical variables

[F (x), G (x′)]D ≡ [F (x), G (x′)]−
∫

d3x′′′
∫

d3x′′
{
[F (x), CA (x′′)]DAB (x′′,x′′′) [CB (x′′′), G (x′)]

}
(166)

Using the Dirac bracket, the commutation relations amongst the canonical phase space variables
(
Ai, π

i
)

are

[
Ai, π

j
]
D

=
[
δj
i −

1
2

(
∇i∇j +∇j∇i

) (
1
∇2

)]
δ (x,x′) (167)

[Ai, Aj ]D =
[
πi, πj

]
D

= 0

Using the derived Dirac bracket, equation (166) along with the canonical Hamiltonian, equation (148), the evolution
equations for any phase space function F restricted to the second class constraint manifold will be

[F (x),H0]D ≡ [F (x),H0]−
∫

d3x′′
∫

d3x′
{
[F (x), CA (x′)]DAB (x′,x′′) [CB (x′′),H0]

}
(168)

From equation (83), the Dirac bracket fixes the form of the Lagrange multipliers of each of the constraints as

λA (x) =
∫

d3x′
{
DAB (x,x′) [CB (x′),H0]

}
(169)

Because the original first class constraints commute with the canonical Hamiltonian, H0, half of the Lagrange
multipliers will weakly vanish on the original first class constraint manifold, allowing the gauge fixed extended
Hamiltonian to weakly take the same form as the canonical extended Hamiltonian

HE = H0 +
∫

d3x

∫
d3x′

{
δ (x,x′) λA (x) CA (x′)

}
(170)

On the reduced phase space with constraints

C0 = ~∇ · ~π = 0 (171)

C1 = ~∇ · ~A = 0

the Lagrange multipliers of equation (169) take the form

λ0 =
1
∇2

C0 (172)

λ1 =
∫

d3x′
{

1
∇2 (x,x′)

[C0 (x′),H0]
}

In order to derive an expression for λ1, the property

d∗∆ = ∆d∗ (173)

which is true in any spatial slice, and the property

∆ = −∇2 (174)
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which is true for ∆ acting on any p-form only if the Riemann tensor on the spatial manifold vanishes, such as it does
in Minkowski space, will prove to be useful. Using the definition for the canonical Hamiltonian, H0, equation (148),
as a volume integral over the spatial domain to integrate [C0,H0] by parts and applying the integral operator 1

∇2 , the
equations of motion generated by H0, equation (155), yield

λ1 =
1
∇2

d∗∆A(1) = −d∗A(1) = −C1 (175)

Inserting

λ0 =
C0

∇2
(176)

λ1 = −C1

into the extended Hamiltonian, equation (170), reveals that in the Coulomb gauge all Lagrange multiplier terms in
the extended Hamiltonian will be quadratic in the constraints.

Even though imposing a complete set of second class constraints will uniquely fix the Lagrange multipliers found in a
general gauge theory, allowing each to be expressed in terms of the canonical variables, as in equations (172) and (175),
when varying the canonical action the Lagrange multipliers themselves must not be varied directly since the actual
values assigned to each will be fixed by the variation itself. In the Coulomb gauge, the situation simplifies considerably
from the general case. Since each term in λACA will be quadratic in a single scalar constraint, multiplying each term
by 1

2 will yield the same result as varying only CA alone, leaving λA to be determined by the dynamics. With this
simplification, the gauge fixed extended Hamiltonian becomes

HE =
1
2

∫ {
π̃(1) ∧ ∗S π̃(1) +

1
∇2

d∗π̃(1) ∧ ∗Sd∗π̃(1) + dA(1) ∧ ∗SdA(1) − d∗A(1) ∧ ∗Sd∗A(1)

}
(177)

generating equations of motion

Ȧi ≡ [Ai,HE ] =
[
δij −

1
∇2

∇(i∇j)

]
πj = πi −

1
∇2

∇iC0 (178)

π̇i ≡
[
πi,HE

]
= −

[
δij −∇(i∇j) 1

∇2

]
∆Aj = ∇2Ai −∇iC1

which are in agreement with the equations of motion generated by canonical Hamiltonian on the second class constraint
manifold through the Dirac bracket

[Ai,HE ] = [Ai,H0]D (179)[
πi,HE

]
=

[
πi,H0

]
D

validating the form of the gauge fixed extended Hamiltonian, equation (177).
Inserting Ȧi = πi into the equation of motion for πi yields(

∂

∂t

)2

Aidxi −∇2Aidxi ≡ �Ai ≈ 0 (180)

revealing that, in vacuum, all physical fields propagate as waves traveling at the single constant speed ±1. Since the
Dirac bracket removes one degree of freedom from the six canonical phase space coordinates

(
Ai, π

i
)
, only two degrees

of freedom remain, each propagating as an independent wave traveling at the constant speed ±1. As expected, these
two remaining degrees of freedom are physical observables which correspond to the two independent helicity states of
electromagnetic radiation [18].

C. Hyperbolicity

This subsection assumes a knowledge of pseudo-differential methods used to convert second order variable coefficient
partial differential systems into first order constant coefficient pseudo-differential systems. Concise introductions to
the pseudo-differential methods used here as well as proofs of strongly hyperbolic formulations yielding well-posed
problems can be found elsewhere [15],[16].[19].
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Consider the canonical Hamiltonian, H0, on the reduced phase space in which the canonical pair
(
φ, π0

)
have

been dropped, and the resulting canonical action on the reduced phase space generated by setting φ = π0 = 0
throughout the canonical action defined on the initial phase space which includes the canonical pair

(
φ, π0

)
. The

reduced phase space, defined by the three canonical coordinate pairs
(
Ai, π

i
)
, will be used throughout the remainder

of this subsection.

1. Canonical Formulation

Varying the extremal path generated by the canonical Hamiltonian, equation (155), yielding

˙δAi = δπi (181)
˙δπi = ∇2δAi

In order to convert to a pseudo-differential system, define

|k| ≡
√

kikjδij =
√

kiki (182)

and insert the variation

δAi = −i
Âi

|k|
ei(ωt+kix

i) (183)

δπi = π̂iei(ωt+kix
i)

into equation (181). Setting Âi, π̂
j equal to constants and dropping all terms lower than first order in |k| converts the

second order canonical formulation, given by equation (155), into a first order pseudo-differential system

ωÂi = |k| π̂i (184)

ωπ̂i = |k| Âi

In this pseduo-differential formulation, the first class constraint ~∇ · ~π ≈ 0, which imposes a relation between phase
space coordinates, becomes

ikiπ̂
i ≡ i |k| π̂ = 0 (185)

imposing a relation between the constants π̂i and the permissible spatial directions of propagation, given by the spatial
unit vector

~n ≡
~k

|k|
=

ki

|k|
∂i (186)

satisfying |n| =
√

nini = 1. The form of equation (185) suggests that the variational constants, Âi, π̂
j , be projected

onto terms which are tangent to ~n, defining the longitudinal components

ÂL ≡ Âin
i (187)

π̂L ≡ π̂in
i

and terms which are orthogonal to ~n, defining the transverse components

ÂT
i ≡ Âi − niÂL (188)

π̂T
i ≡ π̂i − niπ̂L

Defining the normalized frequency as

κ ≡ ω

|k|
(189)
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and inserting the first class constraint condition π̂L = 0, the pseduo-differential system of equation (184) has the
longitudinal sub-block

κÂL = π̂L (190)
κπ̂L = 0

which has the single eigenvalue κ = 0 of multiplicity two, and a single eigenvector, π̂L. Denoting the two independent
transverse components with the index a, where a = {−1, 1}, the transverse sub-block of the pseudo-differential system,
equation (184), is

κÂT
a = π̂T

a (191)

κπ̂T
a = ÂT

a

and has four linearly independent eigenvectors

ẑ±a ≡ ÂT
a ± π̂T

a (192)

with eigenvalues κ±a = ±1. Since the longitudinal sub-block does not have a complete set of eigenvectors, the canonical
Hamiltonian will generate a weakly hyperbolic system.

2. Gauge Fixed Formulation

Varying the extremal path generated by the gauge fixed extended Hamiltonian, equation (178), yielding

˙δAi = δπi −
1
∇2

∇i∇jδπj (193)

˙δπi = ∇2δAi −∇i∇jδAj

Following the same procedure implemented for the canonical formulation, to convert from a second order differential
system to a first order pseduo-differential system, insert the variation defined in equation (183) into equation (193),
again setting Âi, π̂

j equal to constants and dropping all terms lower than first order in |k|. Projecting once again onto
the transverse components yields

κÂT
a = π̂T

a (194)

κπ̂T
a = ÂT

a

revealing that the Coulomb gauge has not disturbed the transverse sub-block, whence the eigenvectors and eigenvalues
of the transverse sub-block will be the same as for the canonical formulation. The pseudo-differential system derived
from the evolution equations generated by the gauge fixed extended Hamiltonian has the longitudinal sub-block

κÂL = 0 (195)
κπ̂L = 0

which has the two linearly independent eigenvectors ÂL and π̂L, each with eigenvalue κ = 0. The longitudinal sub-
block now contains a complete set of eigenvectors, whence the gauge fixed extended Hamiltonian yields a strongly
hyperbolic, and therefore well-posed, system.

D. Synopsis of Electrodynamics as a Gauge System

The canonical formalism for electrodynamics is reviewed in subsection (IV A). In this subsection the first class
constraints are derived along with the first class constraint algebra. The evolution equations generated by the canonical
Hamiltonian are derived and examined.

In subsection (IVB), the Coulomb gauge is imposed through second class constraints which are shown to completely
fix the gauge uniquely. With these second class constraints, a Dirac bracket is derived. The derived Dirac bracket is
used to construct the gauge fixed extended Hamiltonian, and the subsequent equations of motion are derived. In the
Coulomb gauge, the gauge fixed extended Hamiltonian has Lagrange multipliers with analytic solutions, and therefore
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generates evolution equations, equation (178), already containing the canonical error projection modification terms
introduced in subsection (III E).

In subsection (IVC), the hyperbolicity of the canonical and gauge fixed Hamiltonian formalisms is examined. In
this subsection it is shown that the canonical Hamiltonian will generate a weakly hyperbolic system, while the gauge
fixed extended Hamiltonian will generate a strongly hyperbolic system. These results are in agreement with the
abstract analysis presented in subsection (III D) for general gauge theories.
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